Allocation of Bridge Deck Preservation Budget Using Optimization

Hyung S. Shim Wyoming Department of Transportation

Overview

- **1**. General concept of optimization process.
- 2. Models needed in optimization.
- **3**. Implement single objective optimization using two different scenarios. (Using two different objectives in optimization)
- 4. Introduction to multi-objective optimization.

Optimization

- Compares deterioration of bridge deck with improvements along with associated costs to meet the objectives.
- Determines what percentage of the budget should be allocated for specific preservation actions.
- Optimization performed at a network level.
- Specific bridges are to be selected at the project level based on result of budget allocation.

Components needed in optimization

- 1. BMS models Deterioration models, Improvement models, and Cost models.
- What are the objectives for optimization? (Objective Function)
- **3**. What are the constraints in optimization?
- 4. Economic factors. (Inflation rate, Discount factor, etc.)

Optimization for Budget Allocation

Improvement Model

Deterioration Model

BRIDGE PROGRAM

Improvement Strategy

Results of Optimization

P stands for pure deck without rehabilitation history and R stands for rehabilitated deck

Deterioration Model

- WYDOT uses historical NBI deck condition rating data for deterioration modeling.
- Rather than producing deterministic modeling, probable duration model that remains in each of NBI condition ratings are used.
- Markov chain deterioration model are formed from probable duration models.
- Two different deterioration models are produced for bridge decks without / with rehabilitation history.

Probable durations (Do nothing)

Probable durations after REHAB

Deterioration Models

Cost Models

- Estimate costs associated with typical preservation actions .
- Developed by analyzing historical rehabilitation and new construction cost data.
- Developed by a probabilistic approach due to variability and uncertainty in estimation of costs.
- Continually being evaluated, refined and updated as necessary.

Probable Cost Model

Improvement Models

- Simulate the effects of preservation actions in terms of increase in NBI condition rating at network level.
- Developed by analyzing historical rehabilitation data.
 - NBI condition ratings are compared prior to and after application of preservation actions.
- In the form of Markov chain model.
- Continually being evaluated, refined and updated as necessary

Improvement Model

NBI	8	7	6	5
6		36%	64%	
5		53%	47%	
4		49%	38%	13%
3	30%	70%		
2	100%			
1	100%			

Objectives and Constraints

Single Objective Optimization

Objective function, f_1

By manipulating variables, x_i

Minimized Point

Minimizing structural deficiency / Annual budget

Manipulating variables -Allocation fund on various preservation actions.

Achievable structural deficiency / Annual budget.

Annual budget / Target structural deficiency.

Optimization-Scenario 1

- Objective Function Minimizing Structural Deficiency (SD%)
- Constraint Annual budget of 20 million dollars
- Planning horizon 10 years.
- Agency Policy Replace the deck for condition rating equal to or less than 2 prior to other actions.
- Achieve the as minimum as possible structural deficiency with allowable maximum annual budget using agency policy.

Structural Deficiency – Scenario 1

NPRM Measure - Scenario 1

Budget Allocation – 1st Year

P stands for pure deck without rehabilitation history and R stands for rehabilitated deck

Budget Allocation – 10th Year

P stands for pure deck without rehabilitation history and R stands for rehabilitated deck

Structural Deficiency vs. Year

NPRM Measure for Scenario 1

Optimization-Scenario 2

- Objective Function Minimizing annual budget.
- Constraint Achieve structural deficiency of 6% within 3 years and then maintain on 6%.
- Planning horizon 10 years.
- Agency Policy Replace the deck for condition rating equal to or less than 2 prior to other actions.
- Spend as minimum as possible annual budget to achieve the target structural deficiency using agency policy.

Structural deficiency-Scenario 2

Required annual budget

NPRM Measure – Scenario 2

Budget Allocation – 1st Year

P stands for pure deck without rehabilitation history and R stands for rehabilitated deck

Budget Allocation – 10th Year

P stands for pure deck without rehabilitation history and R stands for rehabilitated deck

Considerations

- The single objective optimization produces the focused result to the its objective function.
- There is only one optimal solution point at each year. Therefore there is no trade-off analysis.
- Balanced solution point is necessary to satisfy the multiple objectives in certain level at the same time.
- Number of objective functions can be more than 2.
- There are multiple solution points which satisfy optimality condition.

Multi-Objective Optimization

1st Year multi-objective optimization

Thank you...

