Bridge Joint Performance in Northeastern States

Presentation by: Scott Civjan and Brooke Quinn University of Massachusetts Amherst UMassAmherst

The Commonwealth's Flagship Campus

Research Funded by:

Massachusetts Department of Transportation

WBPP 2016 Presentation

Outline of Project:

- Literature review
- Evaluate MassDOT PONTIS/NBI bridge data
- Meet with 6 MassDOT districts
- Create and distribute survey to 9 Northeast states
- Compile survey responses

Full Report

- Quinn, B. H. and Civjan, S. A. (2016) *Better Bridge Joint Technology*. *UMTC 15.01*, Massachusetts Department of Transportation
- Quinn, B. H. and Civjan, S. A. (2016) "Assessment of Bridge Joint Performance in the Northeastern States" *Transportation Research Record.* Vol 2550. pp 46-53.
 - Overview of joint types and uses
 - MassDOT district information
 - Survey results from 9 states
 - Detail on MassDOT practices and recommendations
 - Detailed comments and recommendations from each state

Effects of Joint Failure

Superstructure damage (Photos courtesy of MassDOT)

Effects of Joint Failure

Substructure damage

Rate of corrosion and degree of damage increase with time

Reference Surveys

- Purvis, R. (2003) Bridge Deck Joint Performance A Synthesis of Highway Practice. NCHRP Synthesis Report 319.
 - Summary of joint types
 - 34 states and 10 Canadian provinces
 - 7 states included in this study
 - Strip seal successful
 - Construction quality and maintenance were significant factors

Reference Surveys

- Milner, M. H. and Shenton III, H. W. (2014) Survey of Past Experience and State-of-the-Practice in the Design and Maintenance of Small Movement Expansion Joints in the Northeast. AASHTO TSP2 Report 24
 - Focus on 2" or less movement
 - 12 states (26 respondents)
 - All 9 states in this study
 - Strip seal common for new construction
 - Strip seal, asphalt plug joint and pourable seal for repairs
 - Compression seal poor performance
 - Construction quality and maintenance were significant factors

Types of Joints: Closed Joints

Figure Source: MassDOT LRFD Bridge Manual Part II, 2013

Types of Joints: Closed Joints

Figure Source: MassDOT LRFD Bridge Manual Part II, 2013

WBPP 2016 Presentation

Types of Joints: Closed Joints

Rutting/cracking in asphalt plug joint

Types of Joints: Closed Joints

Compression Seal ($\leq 2.5''$)

Figure Source: Purvis, 2003

Types of Joints: Closed Joints

 Damage progression of a compression seal (Photos courtesy of MassDOT)

Types of Joints: Closed Joints

Figure Source: MassDOT LRFD Bridge Manual Part II, 2013

Types of Joints: Closed Joints

Damaged strip seal (Photo courtesy of MassDOT)

Types of Joints: Closed Joints

EM-SEAL (
$$\leq 4''$$
)

Figure Source: EM-SEAL Manufacturer, 2015

Types of Joints: Closed Joints

- EM-SEAL installation (Photo courtesy of MassDOT)
 - Pre-formed for curb and barrier installation

Types of Joints: Closed Joints

Types of Joints: Closed Joints

Damaged pourable seal (Photo courtesy of MassDOT)

Types of Joints: Closed Joints

Figure Source: Purvis, 2003

Types of Joints: Closed Joints

Damaged modular joint (Photo courtesy of MassDOT)

Types of Joints: Open Joints

Figure Source: Purvis, 2003

Types of Joints: Open Joints

Types of Joints: Open Joints

Improper function of finger joint (75° F) and trough

Jointless Option

Massachusetts Bridge Inventory

Districts of MassDOT and highway system.

Massachusetts Bridge Inventory

No. of Bridges				TOTAL OWNED				
	1	2	3	4	5	6	TOTAL	BY MASSDOT
Total	703	834	1158	827	858	682	5062	3474
"Jointed Bridges"	185	413	624	558	455	579	2814	2557

Source: PONTIS and NBI Databases See full report for interstate/turnpike bridges

- District 1: Rural, short span, low traffic volume
- District 2: Medium and short spans
- Districts 3 and 4: Wide variety from rural to urban
- District 5: Many limited access highways, high traffic volume
- District 6: Boston, urban bridges, high volume

Massachusetts District Meetings

- Low volume and shorter spans
 - Lane closures common for repair
 - Full installation time allowed
- High volume and limited access highways
 - 8 PM to 5 AM window for work
 - Quick setting headers are required
 - Less surface preparation
- Turnpike bridges
 - Thin wearing surface (1-1/2 in.) limits joint types
 - Quicker deterioration (wearing surface and traffic volume)

Massachusetts Bridge Inventory

Source: PONTIS and NBI Databases

Massachusetts District Meetings

- New construction centralized
 - Design often by consultants
 - Re-deck considered new construction
- Repair district specific
 - Source documents from central office but modified
- Maintenance district specific
 - No manual of practice
 - District decisions based on centralized funding
 - No district has an existing joint maintenance policy

Massachusetts District Meetings

- Wide variety of preferences within state did not match previous survey responses in literature review
- Performance not directly related to traffic volume or bridge span
- Factors in joint selection
 - Expectations of joint performance
 - Installation and inspection practices
 - Regional contractor experience
 - Traffic volume
 - Time window for work completion

Survey

- Survey created in Survey Monkey (44 questions)
 - Joints
 - Headers
 - New installation and repair
 - Maintenance
 - Overall practice
- Distributed to 9 states
 - CT, ME, MA, NH, NJ, NY, PA, RI, and VT
 - 26 responses (45% response rate)
 - Many states had multiple respondents
- Full list of survey questions is available in Final Report

Survey Summary: Overview

- Wide variability in performance, preference, and service lives of any given joint
- Definitions of success and failure of joint varies
- Preventive maintenance and installation workmanship are very important

Survey Summary: Success/Failure Definitions

Survey Summary: Performance Rating

Survey Summary: Performance Rating

- Best performance
 - Link slab
 - EM-Seal
 - Compression seal (poor in previous study)
 - Saw and seal: deck over backwall
 - Finger joints
- Worst performance
 - Open joints
 - Sliding plate joints
 - Pourable seals
- Every joint was rated high and low by at least one respondent

Survey Summary: Expected Service Life of Joint Types

Years	Asphalt Plug Joint	Strip Seal	Compression Seal	Pourable Seal	EM-SEAL	Sliding Plate Joint	Finger Joint	Modular Joint	Link-Slab	Open Joint	Saw and Seal: Deck Over Backwall	Saw and Seal: Over Existing Joint
0-4	6	2	2	11	1	0	0	0	0	1	0	1
5-8	13	1	2	0	1	0	0	1	0	0	1	1
9-12	1	5	6	2	1	0	1	3	1	1	5	1
13-16	1	7	5	0	0	3	2	4	2	0	1	0
>16	0	4	2	0	1	3	16	8	4	3	4	0

• A successful joint is not necessarily the longest service life

Survey Summary: Typical Service Life of Joint Types

- Pourable seals
 - Shortest life (<4 years)
 - Quick installation and repair
 - Less expensive
- Asphalt plug joints
 - Short life (5-8 years)
 - Quick installation and repair
 - Relatively inexpensive

Survey Summary:

Adequate performance with routine repair and maintenance (check all that apply)

WBPP 2016 Presentation

Survey Summary:

- When maintenance was assumed to occur
- Good performance
 - Asphalt plug joints
 - Strip seals
 - Compression seals
 - Finger joints but drainage and snowplows are of concern
 - All types selected by at least one respondent
- Joints rated poorly often rated as adequate performance with proper maintenance

Survey Summary: Importance of Factors

Survey Summary: Comments

- Header installation
 - Old concrete must be sufficiently removed to sound material
 - Difficult to assess, left to contractor
 - 2 feet minimum removal to sides?
 - Apply to fully dry materials
 - Quick setting concrete or elastomeric headers
 - Not as durable
 - Required for overnight construction

Survey Summary: Installation Practices

- Negative influence on joint performance
 - Improper cleaning of joint, surfaces and substrate
 - Sandblasting often skipped due to time constraints
 - Not reaching sound concrete
 - Incorrect opening size or placement of seals
 - Bond agent applied too far in advance of seal placement
 - Application to damp surfaces
 - Failure to install bond breaker tape
 - Phased construction

Survey Summary: Comments

- Specific joint comments
 - Saw and seal proper location of cut is important, mark prior to placing wearing surface
 - Asphalt plug joints perform poorly with high traffic volumes, improper placement of backer rod
 - Compression seal size seal and opening to always be in compression
 - Pourable seal joint edges must be completely clean and dry, improper placement of backer rod
 - Anchorage of armored headers and sliding plate joints is critical

Survey Summary: Comments

- New products
 - EM-Seal
 - Detailing for parapets and curbs
 - Asphalt plug joints
 - Pre-bagged materials
 - Modified to use in combination with strip seal or EM-seal
 - Inverted-V strip seal, Silicoflex joints

RJ Watson Silicoflex system

- DS Brown V-Seal system
- Concrete trough with finger joint (behind abutments)
- Heavy angles and anchorage for joint armor

Survey Summary: Comments

- Watertight testing of new joints (only 3 of 9 states)
 - Warranty post-construction is difficult to enforce
- Maintenance
 - Clean joints and decks (only 5 of 9 states)
 - Funding issues
 - Investment would minimize joint repairs/replacements and bridge element repairs
- Funding
 - Limited
 - Maintenance, construction and repair budgets for joints and structure/substructure are independent

CONCLUSIONS

Recommendations for Implementation

- Pre-construction meetings: address joint installation and expected performance
- Training of contractors, installers and site engineers
 - Proper workmanship
 - Proper installation
 - Proper materials
- Manufacturer representative: on-site/provide training
- Watertight testing of closed joints (new/repair/replacement)
- Warranty joint performance post-construction

Recommendations for Implementation

- Preventive maintenance
- Track joint performance and document repair work (joint and superstructure/substructure) with associated cost
- Budget: consider life-cycle and system costs
- Streamline process for adding new products to approved product lists

Recommendations for Future Research

- Evaluate repair and replacement methods and contracting to determine best practices
- Measure installation tolerances
- Quantify damage from joint and header mis-alignment
- Evaluate header performance under impact, cyclic load, freeze-thaw, etc.
- Develop test methods for approval of joint and header materials
- Determine life-cycle cost comparisons of similar joints with and without preventive maintenance
- Quantify life-cycle cost impacts from failed joints (joint, superstructure and substructure)

References

W

- Quinn, B. H. and Civjan, S. A. (2016) Better Bridge Joint Technology. UMTC 15.01, Massachusetts Department of Transportation
 - <u>http://www.ecs.umass.edu/umtc/researchUMass.shtml</u>
- Quinn, B. H. and Civjan, S. A. (2016) "Assessment of Bridge Joint Performance in the Northeastern States" *Transportation Research Record*. Vol 2550. pp 46-53.
- Purvis, R. (2003) Bridge Deck Joint Performance A Synthesis of Highway Practice. NCHRP Synthesis Report 319. Transportation Research Board, National Research Council, Washington, DC
- Milner, M. H. and Shenton III, H. W. (2014) Survey of Past Experience and State-of-the-Practice in the Design and Maintenance of Small Movement Expansion Joints in the Northeast. AASHTO Transportation System Preservation Technical Services Program (TSP2) Report 242, Newark, Delaware
- MassDOT LRFD Bridge Manual Part II. (2013) Massachusetts Dept. of Transportation

 AASHTO Maintenance Manual for Roadway Association of State Highway and Transport 	Contact information Scott Civjan
VBPP 2016 Presentation	<u>civjan@ecs.umass.edu</u>
	413-545-2521