
Framework for Concrete Bridge Deck Management Practices in Utah

W. Spencer Guthrie, Ph.D., M.ASCE Professor Department of Civil and Environmental Engineering Brigham Young University

Chloride Diffusion

Corrosion threshold for black bar = $2.0 \text{ lb } \text{Cl}^{-}/\text{yd}^{3}$ of concrete

A manufacture of the second se

a grand and a start a second

and the second second

the stand with a the second second

a search

Stay-in-Place Metal Forms (SIPMFs)

Typical Chloride Concentration Profiles for Utah Bridge Decks

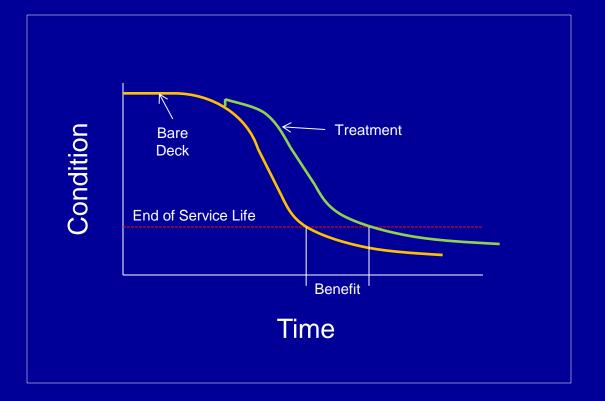
Depth	Chloride Concentration			
(in.)	(lbs Cl ⁻ /yd ³ Concrete)			
	With SIPMFs	Without SIPMFs		
1	21.9	16.6		
2	13.2	7.0		
3	6.9	2.4		
4	3.0	1.1		
5	1.1	0.2		
6	0.4	0.1		
7	0.2	0.1		
8	0.1	-		

Corrosion threshold for black bar = 2.0 lb Cl⁻/yd³ of concrete

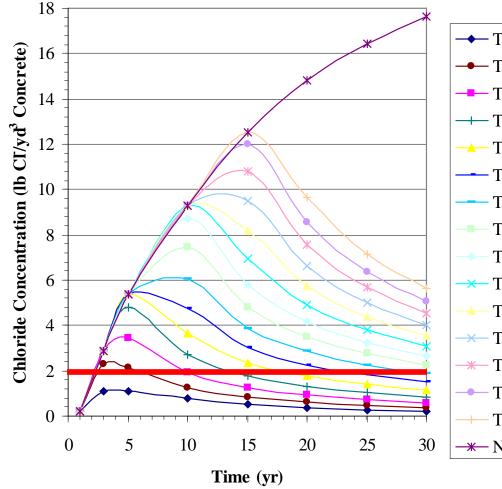
Bridge Deck Deterioration

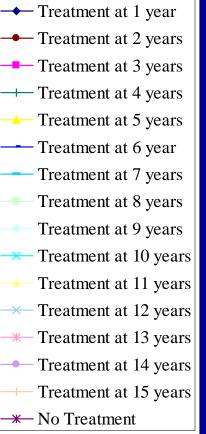
DECK CONDITION

Some initial settlement and/or shrinkage cracking may occur, but chloride ingress and carbonation are primarily diffusioncontrolled. Preventive maintenance treatments should be applied to retard the onset of deterioration. Conditions suitable for corrosion are attained by the end of this period.


Chlorideand/or carbonationinduced corrosion of the reinforcing steel begins, and the formation of rust causes deck damage. Maintenance and/or rehabilitation is required to provide satisfactory ride quality.

Accelerated chloride ingress occurs through preferential pathways within damaged areas. The deck must be replaced, as failure is imminent.


....


DECK AGE

Preservation Strategy

Effect of Surface Treatment Timing

Chloride concentrations through time at a depth of 2 in. on a deck with SIPMFs for different surface treatment timings

(Compilation of 128 simulations)

Recommended Surface Treatment Timing for Utah Bridge Decks

Cover	Deck Age for Surface Treatment				
Depth	Application (yr)				
(in.)	With SIPMFs	Without SIPMFs			
2.0	1	5			
2.5	3	9			
3.0	5	15			

Each additional 0.5 in. of cover beyond 2.0 in. allows an extra 2 years for decks with SIPMFs and 5 years for decks without SIPMFs before a surface treatment must be placed to prevent future accumulation of chlorides in concentrations above the threshold value

Example Surface Treatments

Bituminous Overlay

Epoxy Overlay

Polyester Overlay

Example Data for Bituminous Overlay Placement in Utah

Bridge Deck Deterioration

DECK CONDITION

Some initial settlement and/or shrinkage cracking may occur, but chloride ingress and carbonation are primarily diffusioncontrolled. Preventive maintenance treatments should be applied to retard the onset of deterioration. Conditions suitable for corrosion are attained by the end of this period.

Chlorideand/or carbonationinduced corrosion of the reinforcing steel begins, and the formation of rust causes deck damage. Maintenance and/or rehabilitation is required to provide satisfactory ride quality.

Accelerated chloride ingress occurs through preferential pathways within damaged areas. The deck must be replaced, as failure is imminent.

....

DECK AGE

Recommended Scarification and Overlay Timing for Utah Bridge Decks

Decks with SIPMFs							
		Scarification Depth (in.)					
Original Cover	Overlay Depth	0.5	1.0	1.5			
Depth (in.)	(in.)	Recommended Deck Age for Treatment (yr)					
2.0	1.5	2	2	2			
2.0	2.0	2	2	2			
2.5	1.5	2	4	4			
2.5	2.0	2	4	4			
3.0	1.5	4	6	6			
3.0	2.0	4	6	6			
Decks without SIPMFs							
		Scarification Depth (in.)					
Original Cover	Overlay Depth	0.5	1.0	1.5			
Depth (in.)	(in.)	Recommended Deck Age for Treatment (yr)					
2.0	1.5	6	6	6			
2.0	2.0	6	6	6			
2.5	1.5	10	10	10			
2.5	2.0	10	10	10			
3.0	1.5	16	18	18			
3.0	2.0	16	18	18			

Bridge Deck Deterioration

DECK CONDITION

Some initial settlement and/or shrinkage cracking may occur, but chloride ingress and carbonation are primarily diffusioncontrolled. Preventive maintenance treatments should be applied to retard the onset of deterioration. Conditions suitable for corrosion are attained by the end of this period.

Chlorideand/or carbonationinduced corrosion of the reinforcing steel begins, and the formation of rust causes deck damage. Maintenance and/or rehabilitation is required to provide satisfactory ride quality.

Accelerated chloride ingress occurs through preferential pathways within damaged areas. The deck must be replaced, as failure is imminent.

....

DECK AGE

£.....

1 Page

A DESCRIPTION OF THE OWNER OF THE

HEAD TH

10

55557

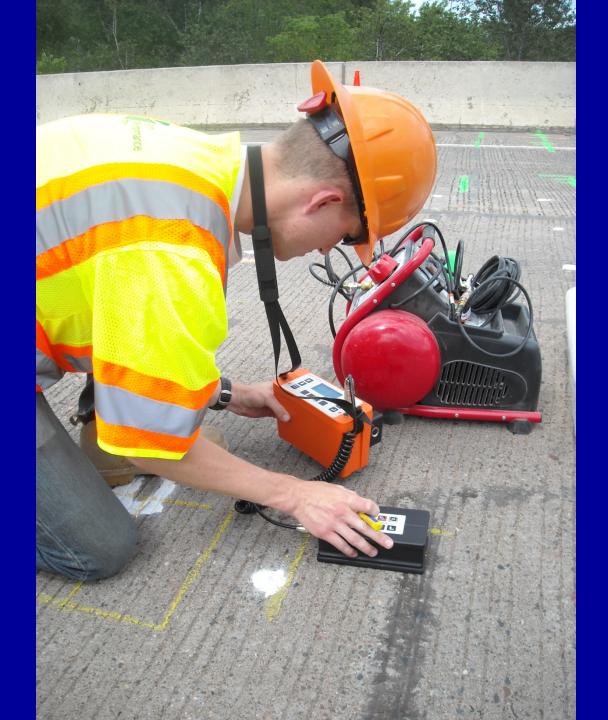
The state of the s

ar an ^Destander (Denselsen) in Marsanar (Ser Manada) (Ser M 1. M. Roberten (Denselsen) in Marsanar (Ser Manada) (Ser Manada) (Ser Manada)

Apply the right treatment to the right bridge at the right time

Tools for Assessment

Rebar Protection

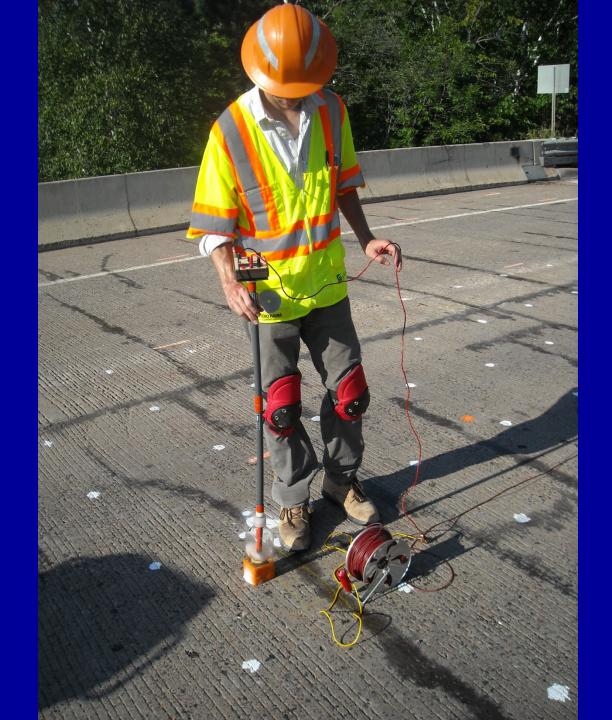

- Concrete cover thickness
 - Cover meter
 - Ground-penetrating radar
- Quality of concrete cover
 - Vertical impedance
 - Resistivity
 - Chloride concentration
- Rebar coating integrity
 - Electrical continuity

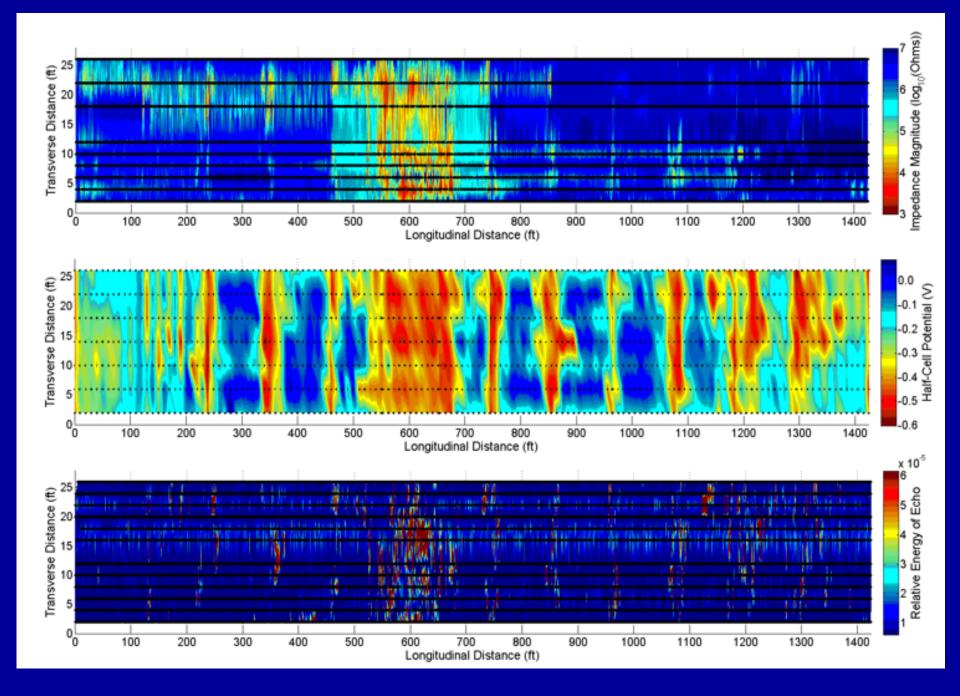
Rebar Corrosion

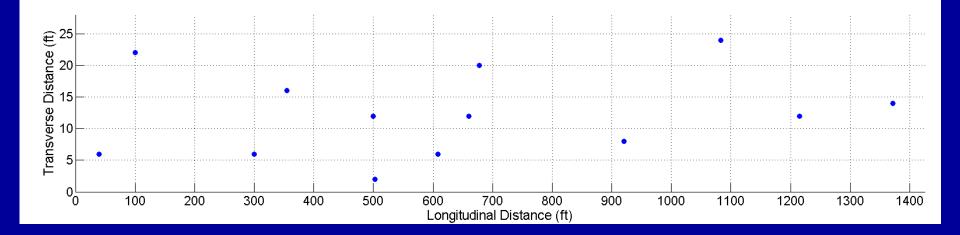
- Rebar corrosion
 activity
 - Half-cell potential
 - Visual inspection (rust staining)
 - Rebar corrosion rate
 - Linear polarization

Deck Damage

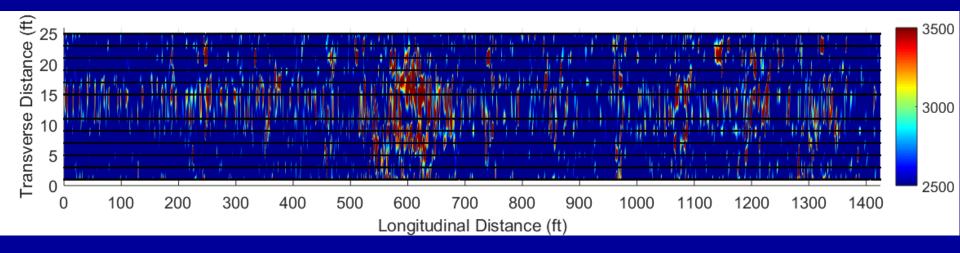
- Delamination presence
 - Impact-echo testing
 - Chaining
 - Hammer sounding
 - Infrared thermography
- Delamination depth
 - Coring
- Spalling (potholes)
 - Visual inspection

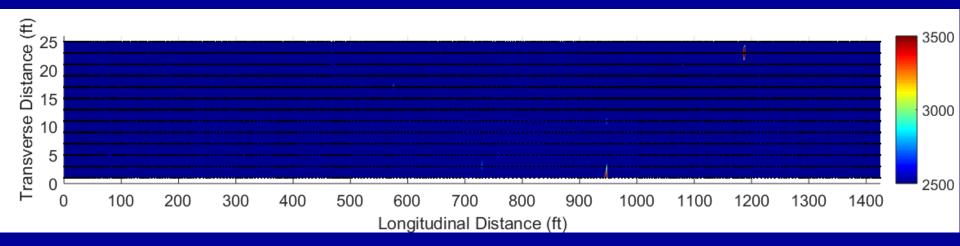





Case Study

11 spans
1425 ft long
28.5 ft wide
1972 construction
1973 concrete overlay
2003 epoxy overlay





Percentage of Deck Area (%) in Indicated Condition		Test	Cover Depth	Delamination	Chloride Concentration (lb/yd ³)				Occurrence of
Delaminated/	Actively	Section	(in.)	Depth (in.)	Top Surface Intact		Top Surface Delaminated		Efflorescence at Bottom of Deck
Patched	Corroding				Top Mat	Bottom Mat	Top Mat	Bottom Mat	Bottom of Deck
0-10	0-10	A, J	3.1, 4.3	-	0.7	0.4	-	-	At End, along Side
	10-30	B, C, D, H, I, K, M	2.9, 3.2, 3.4, 3.4, 3.5	1.125, 1.5, 3.5	0.2, 0.4	0.2, 0.6	2.1, 2.3, 8.6	1.2, 7.0	At Both Ends
	>30	G, L	3.3, 3.4, 3.6	1.5, 4.25	0.3	3.2	3.0, 3.5	2.4, 2.8	At End
10-30	10-30	Е	3.4, 3.6	1.125	0.2	0.2	0.6	0.3	Along Side
	>30	-	-	-	-	-	-	-	-
>30	>30	F	2.9	Asphalt Patch	-	-	3.1	3.5	At Both Ends, along Both Sides, in Middle

Overall	Percentage	Deck				
Condition	ofDeck	Area	Description			
Index	Area (%)	(ff^2)				
1	45.2	18371	Intact with inactive corrosion; conditions suitable for corrosion have probably not yet developed, and no delamination has			
			occurred			
2	26.8	10903	Intact with uncertain corrosion activity; conditions suitable for corrosion may or may not be developing, but no delamination has occurred			
3	19.5	7925	Intact with active corrosion; conditions suitable for corrosion			
			have probably developed, but no delamination has yet			
			occurred			
4	0.1	46	Delaminated with inactive corrosion; delamination probably			
			does not extend beyond the polymer surface treatment or			
			concrete overlay into the original deck surface			
5	1.9	775	Delaminated with uncertain corrosion; delamination may or			
			may not extend beyond the polymer surface treatment and			
			concrete overlay into the original deck surface			
6		2592	Delaminated with active corrosion; delamination probably			
	6.4		extends beyond the polymer surface treatment and concrete			
			overlay into the original deck surface			

Summary

- 1. Bridge deck performance is affected by design, construction, and preservation actions
- 2. Understanding concrete bridge deck deterioration is critical for selecting appropriate condition assessment techniques
- 3. Condition assessment data can be used to guide decisions about preservation, rehabilitation, and reconstruction

Thank You

W. Spencer Guthrie, Ph.D., M.ASCE Professor Department of Civil and Environmental Engineering Brigham Young University

guthrie@byu.edu