

BEEFING UP DETERIORATING BRIDGE DECKS

Graham Bettis, P.E.

TxDOT Bridge Division

What We're Trying to Avoid – Super and Substructures

What We're Trying to Avoid – Super and Substructures

What We're Trying to Avoid – Super and Substructures

- 14,000 On-System Bridges (40% of Inventory) Constructed between 1950 and 1970
- Varying Deck Thicknesses in Different Eras/Bridge Types
- Deteriorated for Variety of Reasons
 - Age
 - Corrosion
 - Reinforcement Detailing

Severe Deck Deterioration

2016 Southeast Bridge Preservation Partnership

Severe Deck Deterioration

Severe Deck Deterioration

Six Inch Decks

Ę, 25'-6 9. 24-0-Roa 6" Slab Bars D. - Bars C Bars B Bars A C'R 3% 12 WF 27 S 12 WF 27 Block bottom 5 flg F.S. Level Line SECTION A-A

Thin Bridge Decks + Age = Map Cracking

Pan Girder Bridges – Thin Crowns

Pan Girder Bridges – Thin Crowns

2016 Southeast Bridge Preservation Partnership

- Identify Bridges with Deteriorated Decks but "Good" or "Fair +" Substructures and Superstructures
- Bridge Deck Condition Ratings
 - 1,000,000 SF Rating <=4
 - 15,000,000 SF Rating = 5
- In Total, Estimated \$170M in Deck Replacement and \$80M in Deck Rehabilitation
- Ten-Year Plan

- Visual
- Nondestructive Evaluation
 - Sounding
 - Ground Penetrating Radar
 - Impact Echo
 - Infared Thermal Imaging

Sounding

Courtesy: Rutgers University

Ground Penetrating Radar

Ground Penetrating Radar

Impact Echo

Infared Thermal Imaging

Infared Thermal Imaging

FHWA LTBP and Nondestructive Evaluation

- Panoramic Camera
- High-Definition Imaging
- Electrical Resistivity Probes
- Impact Echo
- Ultrasonic Surface Waves
- Ground Penetrating Radar
- Global Positioning System

Courtesy: FHWA Research and Technology

- Non-Structural
 - Isolated Cracking
 - Widespread Cracking
 - Uniform Wearing
- Structural
 - Rehab vs. Replace

Cracking

- Crack Sealing
 - Low-viscosity, gravity-fed
 - TxDOT maintains list of preapproved materials
- Discrete Crack Sealing
 - Multiple brush applications
 - Effective but expensive and time consuming
- Widespread Cracking
 - Apply using squeegee or wet-nap roller
 - Add coarse sand
 - Grooves can be problematic

- Structurally sound but waterproofing layer necessary (e.g. cover compromised)
- Multi-Layer Polymer Overlay
 - Crack Sealant
 - Aggregate
 - Resin
- Preapproved MLPO Material
 - Epoxy/Modified Epoxy
 - Methacrylate
 - Other Polymers

Uses for Multi-Layer Polymer Overlay

Spot-Applied Polymer Overlay

- TxDOT Specs include two mix designs:
 - CO = Bridge Deck Concrete Overlay
 - LMO = Latex-Modified Concrete Overlay
- Thickness
 - 1.25" to 1.5" Minimum for LMO
 - Thicker (2") preferable to minimize likelihood of delamination
- Surface Prep
 - Roughened surface to promote mechanical bond
 - Clean, saturated-surface dry
 - No grout or polymer bonding agents

- Concrete Overlay Mix
 - Low W/C
 - Smaller Coarse Aggregate
 - Works particularly well in thick applications (e.g. mechanical tie via reinforcing cage)
- Latex-Modified
 - Very Low Permeability
 - Lower Modulus of Elasticity than Plain Concrete
 - Less Stringent Curing (Faster Turnaround)
 - Effective but Can Be Expensive

Milling Asphalt

- Don't combine with concrete milling
- Milling Concrete
 - Constant depth
- Shot Blasting
 - Surface prep for removal to or above reinforcing layer
 - Remaining concrete is sound
- Hydro-demolition
 - Highly effective
 - Calibrated to remove specified depth
 - Locates unsound concrete
 - Excellent surface prep
 - Very expensive

Existing Bridge Deck

All photos courtesy of Hydro-Technologies

Milling

Concrete Deck after Milling

Hydro-Demolition

Hydro-Demolition

Hydro-Demolition Test Area

Vacuum Cleanup after Hydro-Demolition

Cleaned Deck

Cleaned Deck/Prepared Surface

Latex-Modified Overlay Placement

Completed Overlay

- Sometimes deck replacement not feasible
 - Must maintain traffic
 - Girder layout prevents phasing
 - Lack of detour

Bridge Deck Rehab vs. Replace

Bridge Deck Replacement – Steel Cleaning/Painting

Bridge Deck Replacement – Making Girders Composite

Bridge Deck Replacement

Bridge Deck Replacement

Bridge Deck Replacement

- Surface Preparation
 - ACP Removal: \$3/SY
 - Milling: \$5 \$10/SY
 - Shot Blasting: \$3 \$5/SY
 - Hydro-Demolition: TBD in Texas but currently \$60 \$80/SY
- Overlay
 - MLPO: \$30 \$40/SY
 - 2" Concrete Overlay: \$60 \$80/SY
 - 4" Concrete Overlay: \$120/SY
 - 1.5" Latex-Modified Overlay: \$130/SY
 - 3" Latex-Modified Overlay: \$160/SY
- Bridge Deck Replacement: \$250 \$300/SY

- Long-term preservation centers around designing and building largely maintenance-free structures
- For Bridge Decks:
 - High quality concrete
 - Thicker deck, increased cover
 - Hot and cold weather provisions
 - Curing (8 days minimum)
 - Contractor responsible for addressing cracks and other defects
- No asphalt overlays!
 - Reduces capacity by adding dead load
 - Holds moisture and other contaminants against concrete
 - Reduces rail height
 - Creates debris on caps

QUESTIONS?

Graham Bettis, P.E.

graham.bettis@txdot.gov

512-416-2526 (office), 512-658-1231 (mobile)