# Modernizing Pavement Management in KY

### National Pavement Preservation Conference October 2016 Tracy Nowaczyk, P.E. & Chad Shive, P.E.



### PAVEMENT MANAGEMENT FOUNDATION



### **INVESTMENT IN EQUIPMENT**



# MODERN PAVEMENT MANAGEMENT DEMANDS



# University of Louisville



- Began partnership in fall 2013
- Develop predictive models for asphalt pavement based on legacy data
- Create objective composite pavement distress index
- Map LCMS data to legacy data

# Legacy Data

- Visual evaluation system (VES)
- Distresses measured based on overall extent and most common severity
- Year of recommended treatment
- Measured distresses
  - IRI
  - Rutting





# Laser Crack Measurement System (LCMS)

- Objective assessment of pavement condition
- Captures more factors
  - High detail of Rutting, Macrotexture, Cracking,
    Potholes, Patches, Sealed Cracks, Vehicle Orientation
  - ~95% accuracy for Longitudinal Cracks, ~90% accuracy for Transverse Cracks
- Shifts needs
  - Much less field time for engineers
  - Some of that times shifts to data processing
  - Once data is processed, entire system can be evaluated

# Data Mountain

# VES – High level data with low resolution



LCMS – Detailed low level data with high resolution







#### Need to relate new method to legacy data

|      |             |        |        |      | WPC | WPC |     |     |     |     | OS  | OS  |     |
|------|-------------|--------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|      | RT UNIQUE   | FROM   | TO     | LANE | JD  | JD  | R F | RF  | OC  | OC  | Р   | Р   |     |
|      | ID          | POINT  | POINT  | DIR  | EXT | SEV | EXT | SEV | EXT | SEV | EXT | SEV | APP |
|      | 122-KY-9000 | 0      | 3.648  | L    | 9   | 7   | 5   | 5   | 5   | 5   | 0   | 0   | 3   |
|      | 122-KY-9000 | 3.648  | 11.913 | L    | 6   | 5   | 3   | 4   | 5   | 2   | 3   | 1   | 3   |
|      | 122-KY-9000 | 11.913 | 16.02  | L    | 3   | 1   | 2   | 2   | 1   | 1   | 0   | 0   | 1   |
| From | 122-KY-9000 | 16.02  | 19.15  | L    | 3   | 1   | 1   | 1   | 1   | 1   | 0   | 0   | 1   |
|      | 122-KY-9000 | 19.15  | 22.307 | L    | 1   | 1   | 0   | 0   | 1   | 1   | 0   | 0   | 0.5 |
|      |             |        |        |      |     |     |     |     |     |     |     |     |     |

То

|              |       |     |        |     | CWBS  | CWBS    | CWBS    | CWBS   |  |
|--------------|-------|-----|--------|-----|-------|---------|---------|--------|--|
| Section Name | Begin | End | LEN    | DIP | TypA  | TypA    | TypA    | TypA   |  |
| Session Name | MP    | MP  | (mile) | DIK | Sev   | Low     | Med     | High   |  |
|              |       |     |        |     | (in)  | (ft)    | (ft)    | (ft)   |  |
| 15-KY-1494N  | 6.6   | 6.7 | 0.1    | N   | 0.690 | 89.383  | 62.992  | 15.632 |  |
| 15-KY-1494N  | 6.7   | 6.8 | 0.1    | Ν   | 0.426 | 154.435 | 130.666 | 3.121  |  |
| 15-KY-1494N  | 6.8   | 6.9 | 0.1    | Ν   | 0.421 | 199.566 | 140.278 | 3.534  |  |
| 15-KY-1494N  | 6.9   | 7   | 0.1    | Ν   | 0.544 | 256.281 | 371.720 | 23.269 |  |
| 15-KY-1494N  | 7     | 7.1 | 0.1    | Ν   | 0.458 | 134.963 | 89.799  | 4.914  |  |
|              |       |     |        |     |       |         |         |        |  |

DPPC16

Too Much Data!!!

LCMS reports 176 fields, where do we start?

- Leading Factors Identification for each visual index
- Clustering Analysis (Verifying data integrity / Outlier detection)
- Factorial Analysis (Significance testing for regressor variables)
- Principal Component Analysis (exploratory)
- Regression Modeling
  - Linear Regression
  - **Ordinal Logistic Regression**

Formal Approach

- Step 1: Factors Identification
- Step 2: Data Consolidation and Preprocessing
- Step 3: Data Quality Check
- Step 4: Factorial Analysis using Analysis of Variance (ANOVA)
- Step 5: Linear Regression Model for Data Mapping

#### Factor Identification

| Wheel Path Cracking Extent  | Wheel Path Cracking Extent Wheel Path Cracking |                                | Other Cracking Extent (OC <sup>®</sup> ) |
|-----------------------------|------------------------------------------------|--------------------------------|------------------------------------------|
| (WPC <sup>e</sup> )         | Severity (WPC <sup>s</sup> )                   | Appearance (AFF)               | Other Cracking Extent (OC)               |
| Fatigue Type A EXT          | Fatigue Type A SEV                             | Fatigue Type A SEV             | Edge Crack EXT                           |
| Fatigue Type A LOW          | Fatigue Type B SEV                             | Fatigue Type B SEV             | Edge Crack LOW                           |
| Fatigue Type A MED          | Fatigue Type C SEV                             | Fatigue Type C SEV             | Edge Crack MED                           |
| Fatigue Type A HIGH         | Fatigue Type D SEV                             | Fatigue Type D SEV             | Edge Crack HIGH                          |
| Fatigue Type B EXT          | Non WP Long SEV                                | Non WP Longitudinal SEV        | Transverse Crack EXT                     |
| Fatigue Type B Area EXT     |                                                | Edge Crack SEV                 | Transverse Crack LOW                     |
| Fatigue Type C EXT          |                                                | Transverse Crack SEV           | Transverse Crack MED                     |
| Fatigue Type C Area EXT     |                                                | Sealed Crk Fatigue A LENGTH    | Transverse Crack HIGH                    |
| Fatigue Type D EXT          |                                                | Sealed Crk Long LENGTH         | Transverse Crack Count LOW               |
| Fatigue Type D Area EXT     |                                                | Sealed Crk Edge Length         | Transverse Crack Count MED               |
| Non WP Longitudinal EXT     |                                                | Sealed Crk Transverse Length   | Transverse Crack Count HIGH              |
| Non WP Longitudinal LOW     |                                                | Sealed Crk Transverse Count    | Unclassified Crack LOW                   |
| Non WP Longitudinal MED     |                                                | Sealed Crk Unclassified Length | Unclassified Crack MED                   |
| Non WP Longitudinal HIGH    |                                                |                                | Unclassified Crack HIGH                  |
| Sealed Crk Fatigue A LENGTH |                                                |                                | Unclassified Crack Count LOW             |
| Sealed Crk Long LENGTH      |                                                |                                | Unclassified Crack Count MED             |
|                             |                                                |                                | Unclassified Crack Count HIGH            |
|                             |                                                |                                | Sealed Crk Edge Length                   |
|                             |                                                |                                | Sealed Crk Transverse Length             |
|                             |                                                |                                | Sealed Crk Transverse Count              |
|                             |                                                |                                | Sealed Crk Unclassified Length           |



**Data Consolidation and Preprocessing** 

- Summarize LCMS data for each VES segment
  - Two methods, Average & Max
    - Average method uses length weighted average for all LCMS values that cover a VES section
    - Max method uses maximum LCMS value within a VES section
- Use additional factors from LCMS data
  - Weighted Cracking Extent
  - Pattern Density

Data Quality Check

- Clustering Analysis
  - Agglomerative Hierarchical Clustering
    - All samples start as separate individual clusters
    - Build hierarchy from individual elements by progressively merging the clusters
    - Based on desired distance level (dk), user can choose set of clusters

#### Data Quality Check

|     |              | Dendrogram<br>Ward Linkage, Euclidean Distance |              |              |               |              |                      |                      |              |                      |                      |                    |                                |                    |                    |                     |
|-----|--------------|------------------------------------------------|--------------|--------------|---------------|--------------|----------------------|----------------------|--------------|----------------------|----------------------|--------------------|--------------------------------|--------------------|--------------------|---------------------|
| WPC | TypeA<br>Ext | TypeA<br>Weighted<br>Ext                       | TypeA<br>Low | TypeA<br>Med | TypeA<br>High | TypeB<br>Ext | TypeB<br>Area<br>Ext | TypeB<br>Patt<br>Den | TypeC<br>Ext | TypeC<br>Area<br>Ext | TypeC<br>Patt<br>Den | NWP<br>LONG<br>EXT | NWP<br>LONG<br>Weighted<br>EXT | NWP<br>LONG<br>LOW | NWP<br>LONG<br>MED | NWP<br>LONG<br>HIGH |
| 0   | 0.40         | 0.61                                           | 0.23         | 0.12         | 0.05          | 0            | 0                    | 0                    | 0            | 0                    | 0                    | 13.66              | 16.18                          | 11.16              | 2.47               | 0.03                |
| 0   | 0.29         | 0.39                                           | 0.21         | 0.06         | 0.02          | 0            | 0                    | 0                    | 0            | 0                    | 0                    | 116.24             | 142.11                         | 90.67              | 25.26              | 0.30                |
| 0   | 0.78         | 0.93                                           | 0.63         | 0.15         | 0             | 0            | 0                    | 0                    | 0            | 0                    | 0                    | 78.40              | 94.76                          | 62.22              | 15.99              | 0.19                |
| 0   | 12.11        | 14.34                                          | 9.92         | 2.15         | 0.04          | 1.85         | 3.33                 | 0.00                 | 0            | 0                    | 0                    | 58.28              | 73.35                          | 43.46              | 14.56              | 0.26                |
| 0   | 2.56         | 4.34                                           | 1.46         | 0.42         | 0.68          | 0            | 0                    | 0                    | 0            | 0                    | 0                    | 139.20             | 178.61                         | 100.96             | 37.09              | 1.16                |
| 0   | 46.47        | 55.23                                          | 37.72        | 8.73         | 0.02          | 191.1        | 137.21               | 0.02                 | 13.31        | 6.39                 | 0.01                 | 440.61             | 598.24                         | 283.75             | 156.09             | 0.77                |
|     |              |                                                |              |              |               |              |                      |                      |              |                      |                      |                    |                                |                    |                    |                     |
|     |              |                                                |              |              |               |              |                      | c                    | Observa      | ations               |                      |                    | 1                              | 1                  | 6                  | 5                   |

#### **Factorial Analysis**



- Fit various combinations of the LCMS input variables to the VES output variable and study the Analysis of Variance (ANOVA) results to determine the significant and non-significant factors
- Low p-value (<0.05) is desired for any factor to be significant in the model
- The R2 value shows how close the data is fitted to the regression line
- Sequentially remove factors with large p-values from the model until all factors are significant

#### **Factorial Analysis**

Analusia of Vanianas

| Analysis of variance   |     |           |         |                             |            |         |          |             |
|------------------------|-----|-----------|---------|-----------------------------|------------|---------|----------|-------------|
| Source                 | DF  | Adj SS    | Adj MS  | AFTER SELECTING MAJOR CON   | NTRIBUTING | FACTORS | FROM ABO | VE ANALYSIS |
| Regression             | 12  | 236.649   | 19.7207 |                             |            |         |          |             |
| Fat_Crk_TypeA_Low      | 1   | 0.528     | 0.5280  | Analysis of Variance        |            |         |          |             |
| Fat_Crk_TypeA_Med      | 1   | 6.471     | 6.4714  |                             |            |         |          |             |
| Fat_Crk_TypeA_High     | 1   | 8.740     | 8.7405  | Source                      | DF Adj SS  | Adj MS  | F-Value  | P-Value     |
| Fat_Crk_TypeB_Ext      | 1   | 18.701    | 18.7009 | Regression                  | 6 222.78   | 37.129  | 17.44    | 0.000       |
| Fat Crk TypeB Area Ext | 1   | 15.013    | 15.0126 | Fat_Crk_TypeA_Med           | 1 11.84    | 11.841  | 5.56     | 0.023       |
| TypeB PattDen          | 1   | 7.062     | 7.0624  | Fat_Crk_TypeA_High          | 1 23.77    | 23.771  | 11.16    | 0.002       |
| Fat Crk TypeC Ext      | 1   | 0.405     | 0.4052  | Fat_Crk_TypeB_Ext           | 1 39.37    | 39.366  | 18.49    | 0.000       |
| Fat Crk TypeC Area Ext | 1   | 1.556     | 1.5561  | Fat_Crk_TypeB_Area_Ext      | 1 27.19    | 27.195  | 12.77    | 0.001       |
| TypeC PattDen          | 1   | 2.703     | 2.7027  | TypeB_PattDen               | 1 30.51    | 30.514  | 14.33    | 0.000       |
| NON WHEEL LONG LOW     | 1   | 5.205     | 5.2046  | Non_WP_LONG_Weighted_EXT    | 1 45.19    | 45.194  | 21.23    | 0.000       |
| NON WHEEL LONG MED     | 1   | 1.247     | 1.2467  | Error                       | 42 89.43   | 2.129   |          |             |
| NON WHEEL LONG HIGH    | 1   | 16.209    | 16.2086 | Total                       | 48 312.20  | 8       |          |             |
| Error                  | 36  | 75.555    | 2.0988  |                             |            |         |          |             |
| Total                  | 48  | 312.204   |         | Model Summary               |            |         |          |             |
| Model Summary          |     |           |         | S R-sq R-sq(adj)            | R-sq(pred) |         |          |             |
|                        |     |           |         | 1.45919 71.36% 67.26%       | 60.62%     | 6.1     |          |             |
| S R-sq R-sq(adj        | ) F | -sq(pred) |         |                             |            |         |          |             |
| 1.44871 75.80% 67.73   | 8   | 0.00%     |         | Regression Equation         |            |         |          |             |
|                        |     |           |         | WPC_JD_EXT = 1.192 - 0.0589 | Fat_Crk_Ty | peA_Med |          |             |

WPC\_JD\_EXT = 1.349 + 0.0100 Fat\_Crk\_TypeA\_Low = 0.( + 1.054 Fat\_Crk\_TypeA\_High = 0.0646 Fat\_Crk\_TypeB\_Ext + 0.926 Fat\_Crk\_TypeA\_High = 0.0522 Fat\_Crk\_TypeB i + 0.0600 Fat\_Crk\_TypeB\_Area\_Ext + 144.5 TypeB\_PattDen

+ 0.0510 Fat Crk TypeB Area Ext + 98.0 TypeB Pattle + 0.00512 Non WP LONG Weighted EXT

- 0.0204 Fat Crk TypeC Ext + 0.090 Fat Crk TypeC Area Ext

- 261 TypeC\_PattDen + 0.00498 NON\_WHEEL\_LONG\_LOW

+ 0.00450 NON\_WHEEL\_LONG\_MED + 0.0734 NON\_WHEEL\_LONG\_HIGH

Better model fit but less terms are significant

#### Factorial Analysis

| AFTER SELECTING MAJOR                        | CON                       | TRIBUTING                     | FACTORS      | FROM ABOVE ANALYSIS                                                              |
|----------------------------------------------|---------------------------|-------------------------------|--------------|----------------------------------------------------------------------------------|
| Analysis of Variance                         |                           |                               |              | AFTER SELECTING MAJOR CONTRIBUTING FACTORS FROM ABOVE ANALYSIS                   |
| Source                                       | DF                        | Adj SS                        | Adj MS       | F-V Analysis of Variance                                                         |
| Regression                                   | 3                         | 155.084                       | 51.695       | 2                                                                                |
| Fat_Crk_TypeB_Sev                            | 1                         | 15.739                        | 15.739       | Source DF Adi SS Adi MS E-Value P-Value                                          |
| Fat_Crk_TypeC_Sev                            | 1                         | 19.013                        | 19.013       | $\frac{1}{2}$ Regression 2 173 08 86 538 63 63 0 000                             |
| NON_WHEEL_LONG_SEV                           | 1                         | 7.839                         | 7.839        | Fat Crk TypeB Sev 1 20.97 20.970 15.42 0.000                                     |
| Error                                        | 45                        | 80.549                        | 1.790        | NON WHEEL LONG SEV 1 12.95 12.948 9.52 0.003                                     |
| Total                                        | 48                        | 235.633                       |              | Error 46 62.56 1.360                                                             |
| Model Summary                                |                           |                               |              | Total 48 235.63                                                                  |
| S R-sq R-sq<br>1.33790 <mark>65.82% 6</mark> | (adj<br><mark>3.54</mark> | ) R-sq(p<br><mark>% 55</mark> | red)<br>.48% | Model Summary                                                                    |
| Regression Equation<br>WPC_JD_SEV = 0.141 +  | 1.70                      | 3 Fat_Crk                     | _TypeB_Se    | S R-sq R-sq(adj) R-sq(pred)<br>1.16616 <mark>73.45% 72.30% 68.39%</mark><br>ev + |
| + 0.955                                      | NON_                      | WHEEL_LON                     | G_SEV        | Regression Equation                                                              |
|                                              |                           |                               |              | WPC JD SEV = -0.753 + 8.78 Fat Crk TypeB Sev + 5.93 NON WHEEL LONG SEV           |

#### Factorial Analysis

|                                        | AVG n                            | nethod                | MAX method                       |                       |  |
|----------------------------------------|----------------------------------|-----------------------|----------------------------------|-----------------------|--|
| VES Indices                            | No. of<br>Significant<br>Factors | Model Fit<br>(Adj R²) | No. of<br>Significant<br>Factors | Model Fit<br>(Adj R²) |  |
| Wheel Path Cracking Extent (WPC_EXT)   | 6 /16                            | <b>67.26</b> %        | 2 / 16                           | <mark>66.06 %</mark>  |  |
| Wheel Path Cracking Severity (WPC_SEV) | 2/4                              | <b>72.30</b> %        | 3/4                              | 63.54 %               |  |
| Other Cracking Extent (OC_EXT)         | 7 / 10                           | 65.35 %               | 3 / 10                           | 57.63 %               |  |
| Other Cracking Severity (OC_SEV)       | 1/1                              | 74.23 %               | 1/1                              | 39.54 %               |  |
| Raveling Extent (R_F_EXT)              | 4/5                              | 70.39 %               | 3/5                              | 57.37 %               |  |
| Appearance (APP)                       | 1/5                              | 43.52 %               | 2/5                              | 54.09 %               |  |
| National Paveme                        | nt Preserv                       | vation Con            | ference 20                       | 016                   |  |

Next Steps

- Larger data samples
  - Entire dataset of 2015/2016 testing
- Ordinal logistic regression to model dependent variables as Integer values (for the visual indices)
- Use of Clustering analysis to develop separate regression models for various clusters
  - Different models for newer (less distressed) pavements vs older

# Path to Prioritization

Collect pavement condition data in the past planning cycle

Run regression models to predict distress indices

Perform AHP analysis for weights for criteria

Calculate composite condition index for all road segments

Rank all projects based on composite condition index



# **Existing Project Prioritization**

- Composite pavement scores derived from distress indices
- Large emphasis on roughness of the road
- Projects prioritized based on roughness instead of pavement deterioration

# Analytic Hierarchy Process

- Structured Technique for organizing complex decisions
- Based on mathematics and psychology
- Interviews with panel of experts
- Weights for individual indices calculated and validated
- Each project receives single overall priority score

# Composite Pavement Distress IndexPairwise comparison

|                            | WPC_E                                          | XT                                               | 5                                                      | RF_EXT        | 1                   |           |  |  |  |
|----------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|---------------|---------------------|-----------|--|--|--|
| INTENSITY OF<br>IMPORTANCE |                                                | DEF                                              | INIT                                                   | ION           |                     |           |  |  |  |
| 1                          |                                                | "fac                                             | tor                                                    | A" and "facto | or B" are equally i | mportant  |  |  |  |
| 3                          |                                                | "factor A" is moderately favored than "factor B" |                                                        |               |                     |           |  |  |  |
| 5                          | "factor A" is strongly favored than "factor B" |                                                  |                                                        |               |                     |           |  |  |  |
| 7                          |                                                |                                                  | "factor A" is very strongly favored than "factor<br>B" |               |                     |           |  |  |  |
| 9                          |                                                | "fac                                             | tor /                                                  | A" is extreme | ely favored than "  | factor B" |  |  |  |
| 2,4,6,8                    |                                                | Rati                                             | ngs                                                    | are between   | two adjacent juc    | lgements  |  |  |  |
|                            | ational                                        | Pave                                             | eme                                                    | ent Preserv   | ation Conferen      | ce 2016   |  |  |  |



# Pavement Distress Index (PDI)

- Matrix exercise produced new set of weightings
- New system provides 0-1 scale for each section
- Pilot study comparison of prioritization projects
- Successfully addressed the overemphasis of IRI



# Future PMS Map



# **Special Thanks**

- Dr. Lihui Bai
- Dr. Zhihui Sun
- Guanyang xu
- Prajwal khadgi
- Peiyu luo