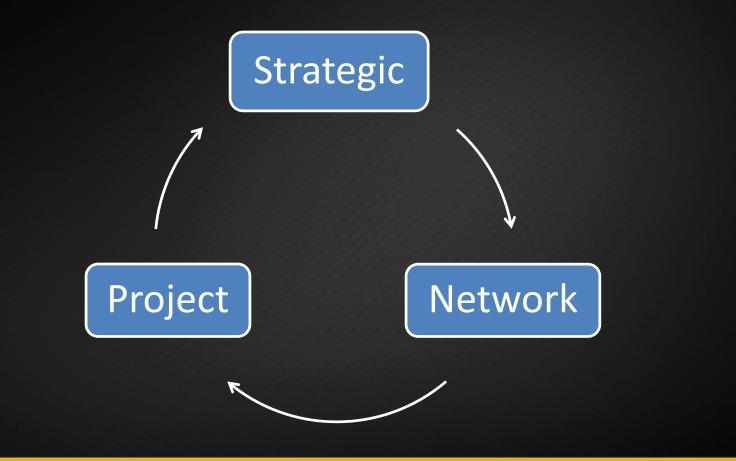

Examples of Decision Support Using Pavement Management Data

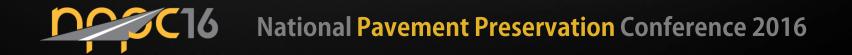
John Coplantz, PE Pavement Management Engineer Oregon Department of Transportation October 13, 2016


Decision Levels^{*}


- Strategic
- Network (Tactical)
- Project (Operational)

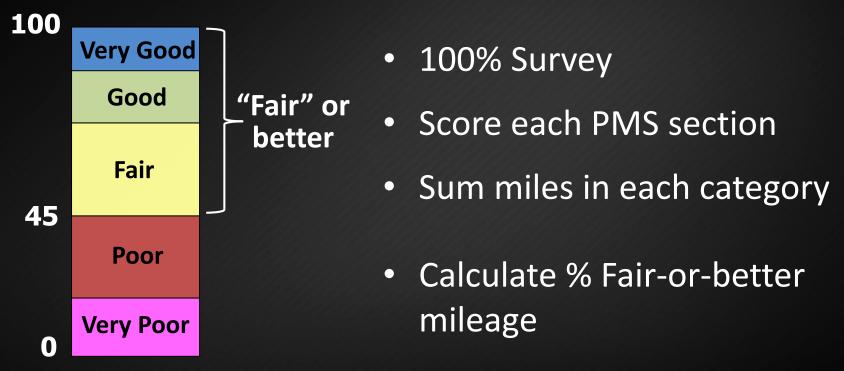
*Pavement Management Guide, 2nd Ed. AASHTO, 2012

Level	Audience	Types of Decisions	Apply to	Detail
Strategic	Politicians Commission Agency Heads	Perf. Meas./Targets Funding Impacts Pavement Strategy	Entire Network	Low
Network	Engr. Mgrs. District Mgrs. Planning Asset Mgrs.	Funding Allocations Pavement Workplan Project Selection Initial Scoping	Entire Network or Subset	Mod.
Project	Project and Maintenance staff	Scope refinement Thickness design Materials selection	Project or corridor	High


D000C16

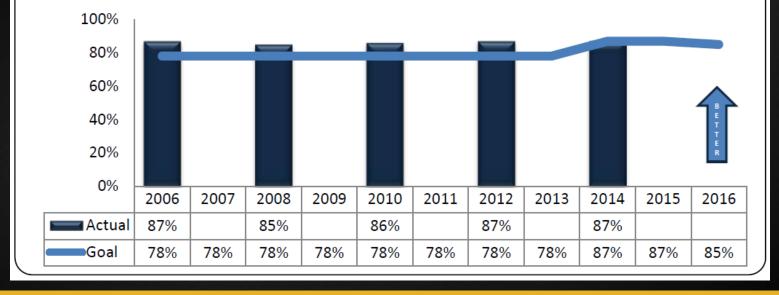
STRATEGIC LEVEL

• What is the condition of our roads?

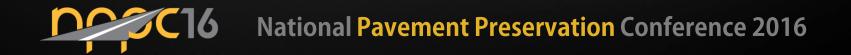


Measuring Pavement Conditions

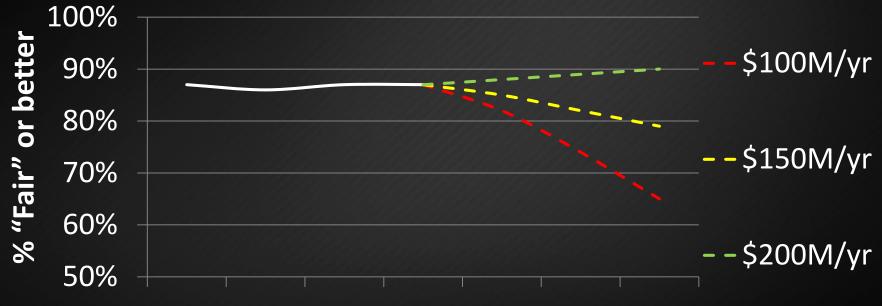
Pavement Rating


STRATEGIC LEVEL

- What is the condition of our roads?
- Are they getting better or worse?


Performance Measures and Targets

Pavement Condition - Percent of miles rated 'fair' or better out of total miles on ODOT highway system

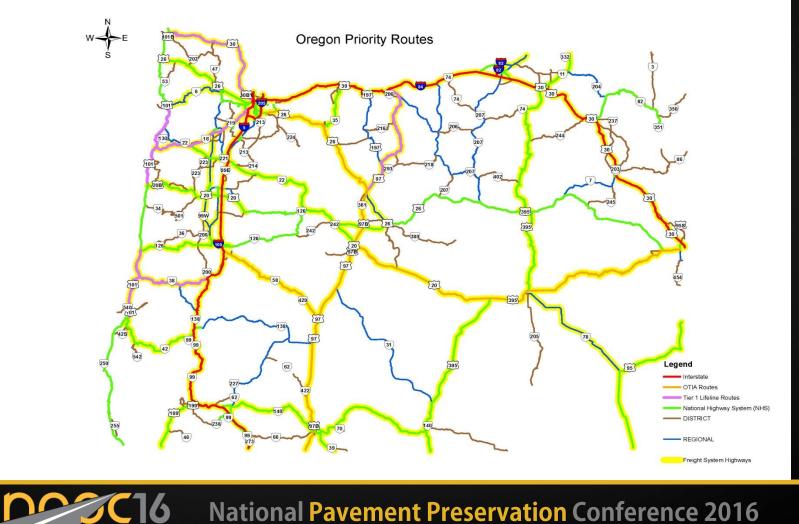


STRATEGIC LEVEL

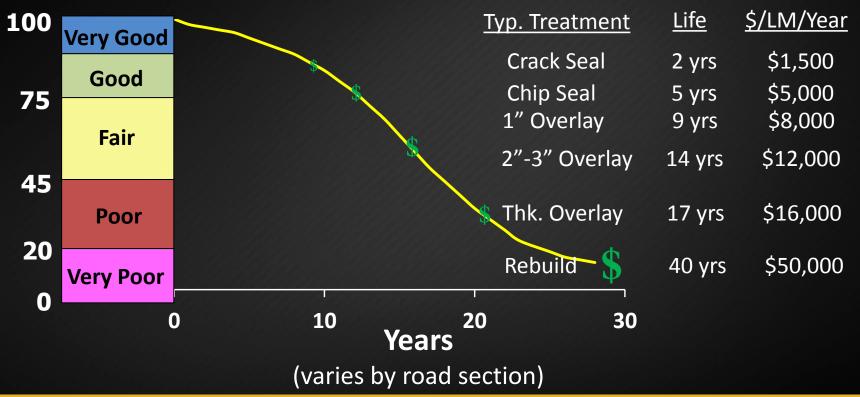
- What is the condition of our roads?
- Are they getting better or worse?
- How much money should we allocate to our pavement programs?

Funding Impacts

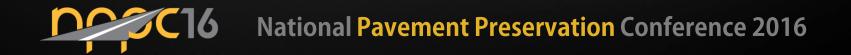
2006 2010 2014 2018 2022 2026 2030


STRATEGIC LEVEL

- What is the condition of our roads?
- Are they getting better or worse?
- How much money should we allocate to our pavement programs?
- How should we prioritize our pavement investments?


Investment Priorities

Route Strategy	Treatment Priorities
Level of Importance	<u>Cost / Benefit</u>
1. Interstate	1. Chip Seals / 1" Lift
2. State Level (NHS) Routes	2. 2"-3" Paving
3. Region / District Level	3. Multi-lift 3R Paving
Routes	4. Reconstruction



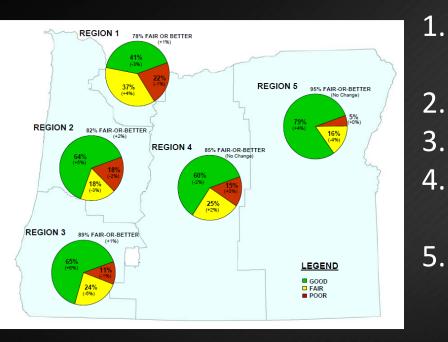
Treatment Priorities

NETWORK LEVEL

How do we divide the money up?

Money Allocations

- Fix-It STIP (Federal Funds)
 - Interstate Paving
 - Region Paving
 - Chip Seals
- Maintenance Program (State Funds)
 - MIM (Interstate quick hit)
 - Low Volume (Chip Seals and Thin Paving)
 - Patching


Interstate Allocation

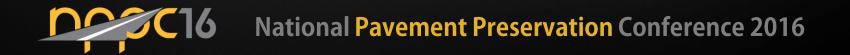
- Target minimum 95% fair or better
- Revolving 8 Year Workplan Update every 2 yrs.
 - Current 4-Year STIP
 - Draft STIP (Years 5 and 6)
 - Future STIP (Years 7 and 8)
 - Shelf Projects

Region Paving – Initial Allocation

- 1. Forecast conditions one STIP cycle ahead (8 yrs. from data year)
 - . Compute % fair or better by Region
- 3. Compare to target (by Hwy. class)
- 4. Determine \$ needs in each Region to reach target
- 5. Apply resulting percentages to funds available

Chip Seal Allocations

STIP – Primary Routes
 – Target Cycle Time – 6-10 years



- Maintenance Low Volume Secondary
 - District Discretion up to 80% of their budget

Target Cycle Time – 8-14 years

NETWORK LEVEL

- How do we divide the money up?
- What projects should we do, and what year?

Fix-It STIP Paving Program

- Timeline Data to Construction 6 years!
- Use PMS to develop initial priority list
 - Project conditions 6 years ahead
 - Look to paving where chip seals, crack sealing, or patching is not viable option or will no longer work
 - Priority to higher classes / traffic highways
 - Priority to projects with higher cost effectiveness

Fix-It STIP Paving Program

- Regional preservation team (led by DM's)
 - Do road tour
 - Factor in regional and local issues, other work, etc.
 <u>Prioritize list for scoping</u>

150% List

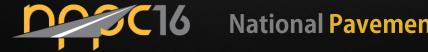
- 1. Start with Road Tour Priority List
- 2. Field Scope ≈200% of Initial Allocation
- 3. Refine Cost Estimates
 - Investigate differences planning \$ vs. scope \$
- 4. Cut to 150% list

New Trial Process $150\% \rightarrow 100\%$ **Applies to Pavement and Bridge Program Score 1-5 for Each of these Factors** Weighting Route Classification, ADT, Truck ADT 25% Cost Effectiveness, Delay Risk 25% **Program Priority** 25% **Region Priority** 25%

D000C16

Classification Points

Classification Score Interstate 5 **OTIA or Seismic Lifeline** 4 State Class Route or NHS 3 **Regional Class Route** 2 **District Class or Other** 1


ADT Points

Traffic Level (ADT) > 10,000 >4,000 to <=10,000 >1,500 to <= 4,000 >500 to <=1,500 <=500

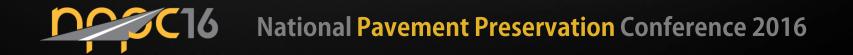
Truck ADT Points

Truck ADT Score > 1,200 5 >600 to <= 1,200 4 >300 to <= 600 3 >100 to <= 300 2 <=100 1

Cost Effectiveness

<u>\$ / Lane Mile / Year</u>	<u>Score</u>
<= \$10,000	5
>\$10,000 to <=\$15,000	4
>\$15,000 to <=\$20,000	3
>\$20,000 to <= \$40,000	2
>\$40,000	1

Deprice 16 National Pavement Preservation Conference 2016


Delay Risk

- Score 1 to 5
- Looks at Consequence of Delay beyond STIP
 - Maintenance Cost / Risk
 - Pavement Repair Cost Risk (missing the window)

Program Priority (1 to 5)

- Pavement Program Manager (yours truly) allotted 3 points per project
- Favor Projects which....

- Help performance measure achieve target
- Maximize benefit to the pavement and/or reduce maintenance requirements and costs
- Maximize long term pavement service life
- Provide safety benefits (i.e. rutting or pothole / failed pavement hazards / friction issues)
- Improve poor smoothness on routes with higher traffic speeds and freight movements

- Address severe raveling / degradation of driving surface too widespread for patching
- Minimize repetitive, reactive "throw away" maintenance costs
- Treat the disease rather than doing "short term fixes" that temporarily treat symptoms
- Have negative impacts if treatment is deferred beyond the STIP period

Region Priority (1 to 5)

- Regions Allotted 3 points per project
- Suggested criteria include, but not limited to:
 - Maintenance Impact
 - Community Impacts (economics, travel time, freight & modal impacts, etc.)
 - Safety Impact
 - Detour or alternative route availability
 - Project Delivery Staffing implications

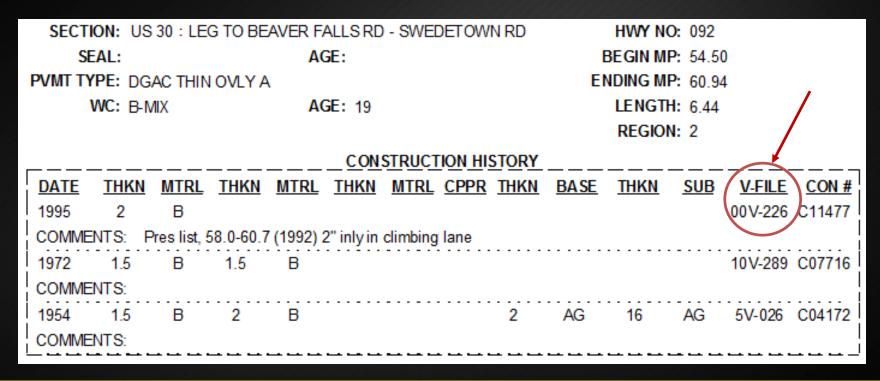
100% List

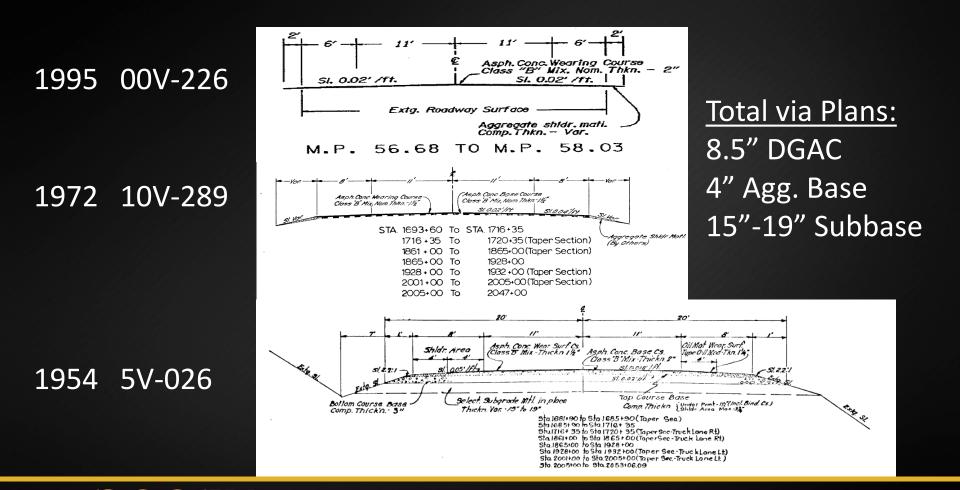
- 1. Combine Bridge and Pavement project in one list
- 2. Rank by total weighted scores
- 3. Send to Highway Management Team
 - use results to set final Bridge/Pavement funding levels
 - use results for regional paving splits
 - use results for initial 100% project list

NETWORK LEVEL

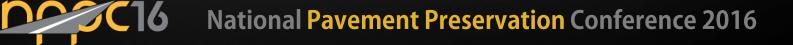
- How do we divide the money up?
- What projects should we do, and what year?
- Are there bundling opportunities?
- Are there leveraging opportunities?

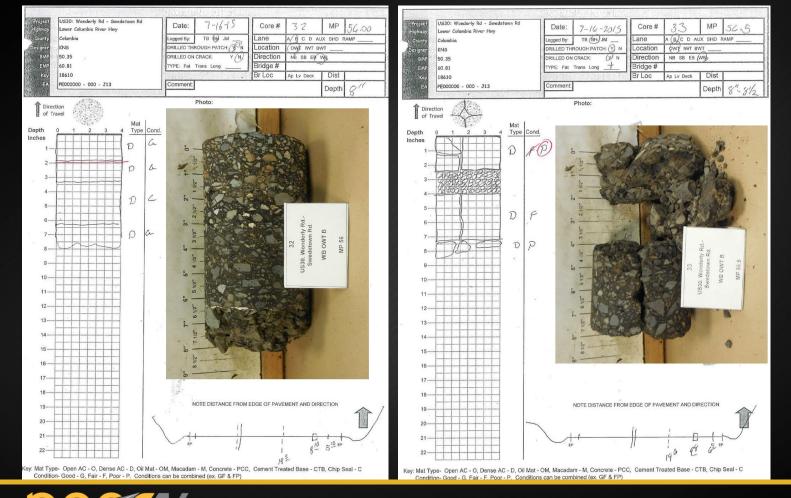
100% List \rightarrow Final


- Start with 100% list
- Option to swap projects (leverage enhance)
 - Swap must be from the 150% list
 - Program Manager and District Manager must approve
- Shelf Program develop from unselected projects


PROJECT LEVEL

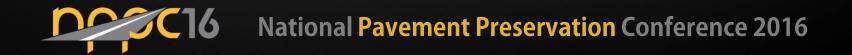
What is this road section made of?
 Last resurfacing When? What? How thick?


Pavement History



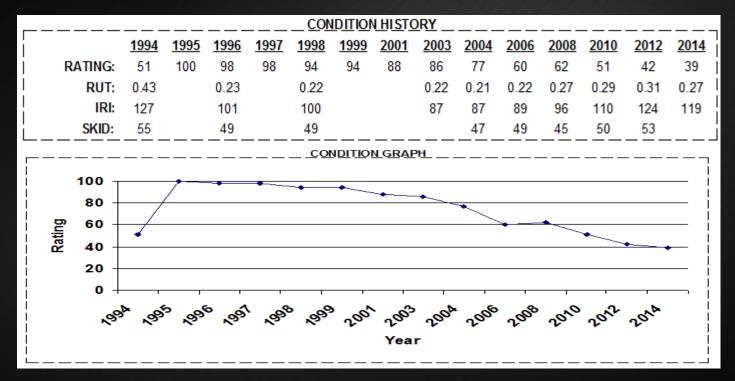
Mix Design Database

2007 US30: COLUMBIA COUNTY LINE - MP 61.70 (BOAT BMP 61.70 EMP 69.95		🖌 Wearing 🖌 Base	C13350
Asphalt Mix Properties:	Volum etric Properties as Built:	Asphalt Mix Gradation:	
Mix Type: 1/2" Dense Mix	E ffective binder content (%): 11.0013	% Retained 3/4": 0	
Mix Level: 3	Air voids (%): 7	% Retained 3/8": 20	
Number of Gyrations: 100	Total unit weight (pcf): 147.98	% Retained #4: 49	
Lime Added to Mix		% Passing #200: 7.2	
Asphalt Grade: PG 64-22			
%Rap: 30.00	i i		
Tensile Strength Ratio: 93			



PROJECT LEVEL

- What is this road section made of?
 - Last resurfacing When? What? How thick?
- Performance?


– How well has this section performed?

21 yrs since last ovly (2" DGAC) Overall Condition = 29 39% fatigue cracking (by length) 27% patching Avg. IRI = 117 in/mi Avg. Rut = 0,3 ADT = 8,00020 Yr ESAL's = 5 million

Performance Over Time

Depric 16 National Pavement Preservation Conference 2016

PROJECT LEVEL

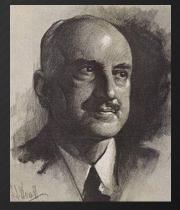
- What is this road section made of?
 - Last resurfacing When? What? How thick?
- Performance?
 - How well has this section performed?

 How have other projects like the one we are planning to do been performing?

Depric 16 National Pavement Preservation Conference 2016

Nearby Project - Context

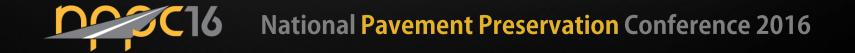
9 yrs since last ovly (3") Overall Condition = 96 0% cracking Avg. IRI = 58 in/mi Avg. Rut = 0.2"


ADT = 6,000 20 Yr ESAL's = 5 million Total via Plans: 8.5" DGAC 10" Agg. Base 18" Subbase

D000016

PMS Data has Lessons

- PMS data is the <u>feedback tool</u> for evaluating previous decisions that have been made
- PMS data can be an important <u>knowledge transfer</u> tool for future road managers


George Santayana

"Those who fail to learn from history are doomed to repeat it"

John Coplantz Pavement Management Engineer

Oregon Dept. of Transportation Pavement Services Unit 800 Airport Road Salem, OR 97301 503-986-3119 john.s.coplantz@odot.state.or.us

