SPS-2 Concrete Pavement Preservation Experiment TPF-5-(291)

Jeff Uhlmeyer

State Pavement Engineer Washington State DOT

LTPP SPS Program Areas

- SPS-1: Structural Factors for AC Pavements
- SPS-2: Structural Factors for Concrete Pavements
- SPS-3: Preventive Maintenance for AC Pavements
- SPS-4: Preventive Maintenance for Concrete Pavements
- SPS-5: Rehabilitation of AC Pavements
- SPS-6 Rehabilitation of Concrete Pavements
- SPS-7: Bonded Concrete Overlays
- SPS-8: Study of Environmental Factors
- SPS-9: SuperPave Mixes

SPS-2: Strategic Study of Structural Factors for Rigid Pavement

- Concrete Thickness (8" & 11")
- Base Type (LCB, DGAB, PATB)
- Flexural Strength (550 psi & 900 psi)
- Slab Width (12' & 14')
- Edge Drains (with PATB)
- Site Factors
 - Temperature (freeze & no-freeze)
 - Precipitation (wet & dry)
 - Subgrade (fine & coarse)

5 design factors

3 site factors

Statistical Design of SPS-2 Experiment

- Final Experiment was a one-half fractional factorial experiment based on construction of <u>16 experimental</u> <u>locations, with 12 test sections each</u>.
- Only 14 experiments were constructed, not 16 and one failed early on so only 13 experiments were available for most of the evaluation period.

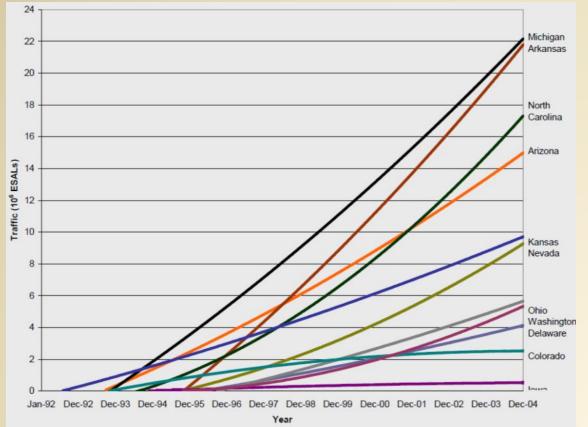
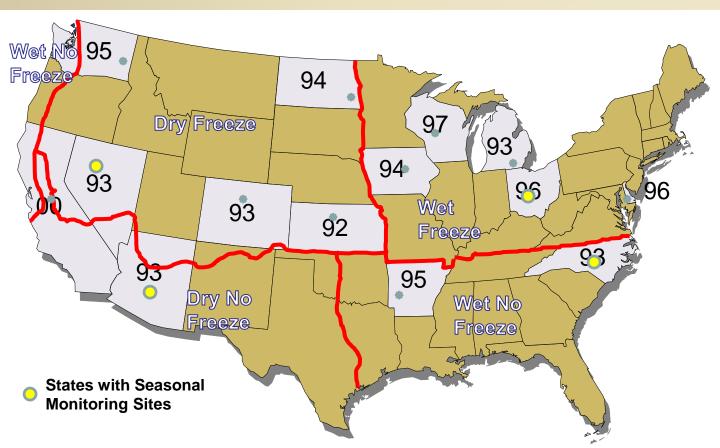
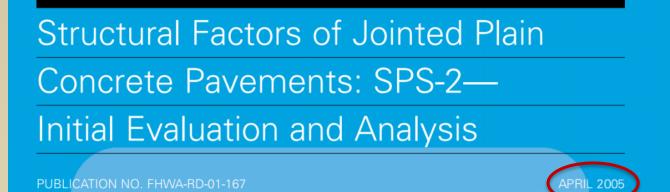


Table 5. Current status of SPS-2 experiment.

Par		Structure						Cli	mate	Zone	s, Sul	bgra	de, Si	te										
Fav	ement	structure	l			V	Vet					Dry												
Bass Trms/	P	PCC			Freeze			I	No-Fr	eeze			I	reeze			No-F	reeze						
Base Type/ Edge Drain	Thick	Flexural	Lane Width m	Fi	ine	Coa	rse	Fir	ie	Coa	arse	Fi	ne	Coar	se	Fi	Fine		irse					
	mm	Strength MPa	m	J	К	L	М	N	0	Р	Q	R	s	Т	U	v	w	x	Y					
			3.66	OH, KS		DE		NC						NV, WA				CA1						
	202	3.8	4.27		MI, IA		WI		AR				ND		со				AZ					
	203		3.66		MI, IA		WI		AR				ND		со				AZ					
AGG		6.2	4.27	OH, KS		DE		NC						NV, WA				CA1						
100		20	3.66		MI, IA		WI		AR				ND		со				AZ					
	279	3.8	4.27	OH, KS		DE		NC						NV, WA				CA^1						
	219		3.66	OH, KS		DE		NC						NV, WA				CA^1						
		6.2	4.27		MI, IA		WI		AR				ND		со				AZ					

Traffic Levels on SPS-2 Experiments




Seasonal Monitoring Sites and SPS-8 Experiment

- <u>Seasonal Monitoring Sites</u>: "...variations in pavement response and material properties due to the separate and combined effects of temperature, moisture and frost/thaw variations."
 - Four SPS-2/SM Projects: AZ, NC, NV, OH:
- <u>SPS-8</u>: The effect of climatic factors and subgrade type on pavement sections incorporating different designs and subjected to very limited traffic as measured by the ESAL accumulation
 - Six SPS-2/8 Projects: <u>AR</u>, CA, CO, OH, <u>WA</u>

States Constructing LTPP SPS-2 Experiment

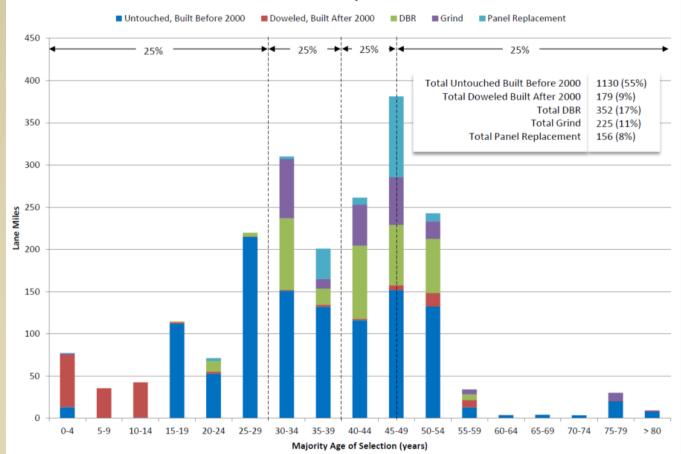
Authored by Y. Jane Jiang and Michael I. Darter, ERES Consultants

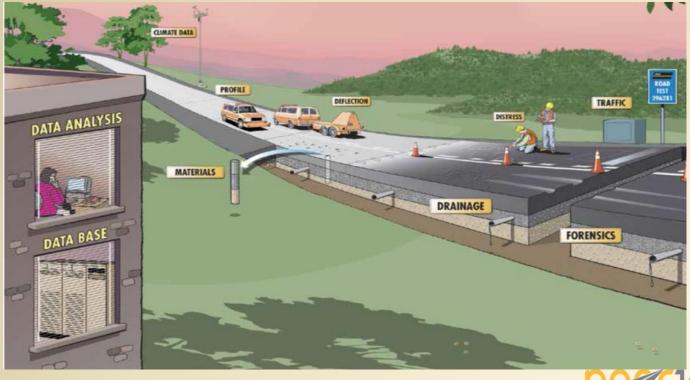
to provide answers to HOW and WHY

pavements perform as they do!

Development of an SPS-2 Pavement Preservation Experiment: TPF-5-(291)

Arizona California Colorado Georgia Kansas North Carolina Washington


¹² Washington -1918 Concrete Slabs



WSDOT PCCP Preservation

Distribution of PCCP Miles by Rehabilitation Method

Long Term Pavement Performance (LTPP)

FHWA Evaluation Criteria

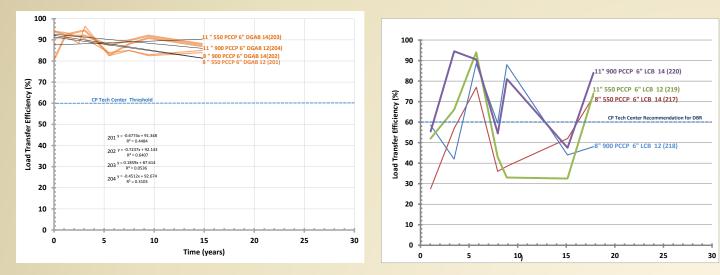
Measure	Assessment														
		Population Consideration													
IDI (in (mi)	Popu	lation < 1 N	1illion	Population > 1 Million											
IRI (in/mi)	Good	Fair	Poor	Good	Fair	Poor									
	<95	95 - 170	>170	<95	95 - 220	>220									
	No Dopula	tion Consid	dorations												
	Good	Fair	Poor												
Cracking Percent	<5	5 - 10	>10												
	No Popula	ition Consid	derations												
Faulting (in)	Good	Fair	Poor												
	< 0.05	0.05-0.15	> 0.15												

FHWA Roughness Criteria

	Pave	ment Stru	icture							Clir	natio	Zon	es, S	ubgra	ade					
		PC	СР					W	ET							D	RY			
Drainage	Base	Thicknes	Flexural	Lane		FRE	EZE		1	NO FF	REEZ	E		FRE	EZE		2	NO FI	REEZ	E
	Туре	(inches)	Strength	Width	Fi	ne	Coa	arse	Fi	ne	Coa	arse	Fi	ne	Coa	arse	Fi	ne	Coa	arse
			14-D (psi)	(ft)	KS	ND	DE	WI	NC	AR			WA	CO					CA	AZ
			550	12	8				7										4	
		8	330	14						5										3
		l °	900	12		18				0										16
No	DGAB		900	14					4										10	
	DGAB		550	12		0		13		7				14						5
		11	330	14	8				0										0	
		1 11	900	12			9		9										1	
			900	14		0		0		5				18						18
			550	12	10				0											
		8		14		10				6				0						
		8	900	12		13				12				12						
No	No LCB		900	14	5				5				3						13	
			550	12		10				13				0						13
		11	550	14	0		10		0				13						12	
			900	12	0		0		0				8						1	
			500	14				12		0				0						
			550	12									16							
		8	550	14				15						15						
			900	12				0		13				18						
Yes	РАТВ			14																
Yes PA1			550	12										0						15
		11		14															0	
			900	12	0		2												12	
			500	14		0				0				0						18

16

FHWA Cracking Criteria


	Pave	ment Stru	cture							Clir	natic Z	ones	nes, Subgrade											
		PC	СР					W	ET							D	RY							
Drainage	Base	Thicknes	Flexural	Lane		FRE	EZE			NO FI	REEZE			FRE	EZE		I	NO F	REEZ	E				
	Туре	(inches)	Strength	Width	Fi	ne	Coa	arse	Fi	ne	Coars	е	Fin	ie	Соа	irse	Fi	ne	Coa	arse				
			14-D (psi)	(ft)	KS	ND	DE	WI	NC	AR		V	VA	CO					CA	AZ				
			550	12	7														1					
		8	550	14						7														
		Ŭ	900	12																				
No	DGAB		500	14	12							_ 1	12						1					
	20,12		550	12																				
		11		14																				
			900	12																				
				14										9										
		8	550	12			1		6				4						1					
				14		0				5			_							4				
			900	12						5			_							4				
No	LCB			14									1						1					
			550	12																9				
		11		14								_	7						4					
			900	12	20							_	_						3					
				14								_	_											
			550	12						4.0		_	_											
		8		14						12		_	_							47				
Yes			900	12								_	_							17				
	РАТВ			14 12										18										
			550	12										10										
		11		14																				
			900	12														-	_					
				14																				

FHWA Faulting Criteria

	Pav	ement Stru	cture							Clir	natic Zon	ones, Subgrade												
		PC	СР					W	ET						D	RY								
Drainage	Base	Thickness	Flexural	Lane			EZE		ſ	NO FF	REEZE		FRE	EZE		ſ	NO FI	REEZ	E					
	Туре	(inches)	Strength	Width	Fi	ne	Coa	irse	Fi	ne	Coarse	Fi	ne	Coa	arse	Fi	ne	Coa	arse					
			14-D (psi)	(ft)	KS	ND	DE	WI	NC	AR		WA	CO					CA	AZ					
			550	12	9													8						
		8	550	14						7														
		Ŭ	900	12						15			15						18					
No D	DGAB		500	14	17													8						
	DOAD		550	12						7														
		11	550	14																				
			900	12																				
			500	14																				
			550	12																				
		8		14		9																		
		-	900	12									14											
No	No LCB			14																				
			550	12		16																		
		11		14																				
			900	12																				
				14																				
			550	12																				
Yes PATB		8		14						16														
			900	12						16														
	РАТВ			14																				
			550	12																				
		11		14																				
			900	12																				
				14																				

16

Issues with LTE as Performance Measure

Conclusions

- Base Type the Most Significant Design Feature
- PATB is Best Performing Base (cracking and roughness)
- LTE Results Indicate PATB is Worst Performing Base
- Roughness Most Difficult FHWA Criteria to Meet
- Faulting Criteria is Easiest FHWA Criteria to Meet
- Both LTE and Cracking Should be Further Investigated in Terms of Suitability

Project Unfolds in Two Phases:

- Phase 1 focuses on assessing what sections exist, what data is available, and to identify what can and cannot be studied on the remaining test sections
 - Six Month Study by Nichols Consulting (11/1/15 to 4/2016)
- Phase 2 will be the development and implementation of the preservation experiment that will be developed after the conclusion of the Phase 1 effort

Phase 1 Opportunities

 Analyze selected SPS-2 sites with Pavement ME and compare predicted performance to actual performance

Non Traditional Phase 2 Opportunities

- Passing of the baton
- Great training opportunity
- Bring to bear the best minds on determining preservation strategies
- Renew and sustain interest in future SPS-2 evaluations
- Generate awareness of and Tech Transfer for SPS-2 performance impact of design features

Non Traditional Phase 2 Opportunities

Engage all of the industry to develop
 the best experiment

Test Section Layout

Un Dowelled Sections

	900 psi Flexural Stength												550 psi Flexural Strength											JL	St	ate S	Supp	olem	nenta	al @	9550	psi	Flex	ural	Stre	ngth	n	
205		205		250		550		220		220		475		205		265		295		250		235		205		500		249		151	_	200		200		200		236
	214		222		218		220		224		216		215		223		219		217		221		213		262		263		264		265		266		267		268	
								8																							-							
3																																						

Base Types

- Dense Graded Aggregate Base (4" & 6")
- Permeable Bituminous Treated Base (4") Note: These are the only Sections with Edge Drains
- Lean Concrete Base (6")
- Bituminous Treated Base (4")

Shoulder Types

- 12 ft Shoulder Width
- 14 ft Shoulder Width

26 te, time and initials of last edit Phase 2 Opportunities

- Conduct a Tech Day At Selected SPS-2 Location
 - Host workshop and field review of site
 - During field review all participants rate test sections and recommend strategies (ETG panel will participate in all field reviews)

272te, time and initials of last edit Phase 2 Opportunities

- Conduct a Tech Day at Selected SPS-2 Location
 - Participants can compare their own evaluations to group evaluations and ETG
 - Each state identifies current and future Issues– living SPS-2 sites

- Life extension of concrete pavement
- Development of PMS triggers for concrete preservation
- Improved ride quality
- PCCP design life verification

- Comparison of structural capacity to remaining service life
- Sealant research
- Texture durability
- Changes in material properties over time

- Development of the best preservation techniques and materials
- US scanning tour of the SPS-2
 performance
- Evaluation of non-destructive test devices

³¹ate, time and initials of last edit What are Potential Opportunities?

- Extending environmental monitoring test results
- Improving the current SPS-2 experiment
- Dowel bar retrofit (DBR)
- Implementing SHRP2 R26 "Preservation Approaches to High Traffic-Volume Roadways"

- Measurement of solar reflectance
- Rolling resistance measurement
- Evaluation of joint opening movement data from SMS sites
- Curl and warp analysis

Contacts:

- Lu Saechao, WSDOT Research Manager, <u>Saechal@wsdot.wa.gov</u>, 360-705-7260
- Jeff Uhlmeyer, WSDOT, State Pavement Engineer, <u>UhlmeyJ@wsdot.wa.gov</u>, 360-709-5485

TPF-5-(291)

If you would like to participate or have questions regarding this pooled fund study, please contact Jeff Uhlmeyer or Lu Saechao.

