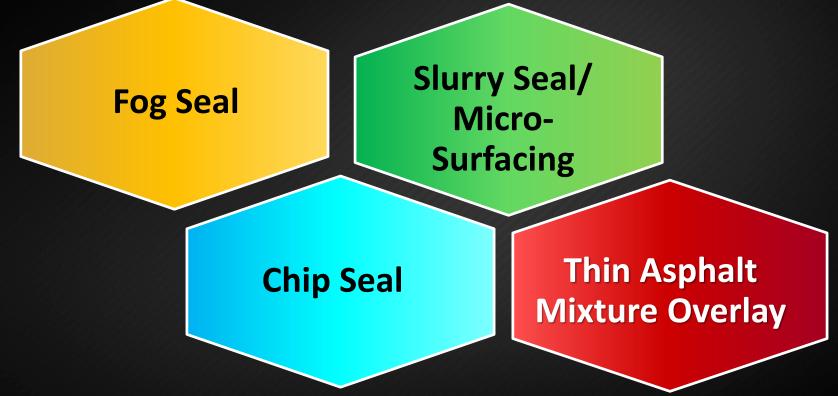
Dispute Resolution National Pavement Preservation Conference

October 13, 2016 Marriott Hotel Nashville, TN

Jon Epps Texas A&M Transportation Institute Texas A&M University

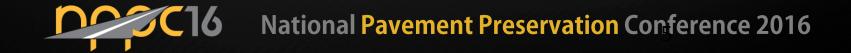
Outline

Introduction


- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary

Introduction

- Pavement Preservation Alternatives
- Common Disputes
- Resolution

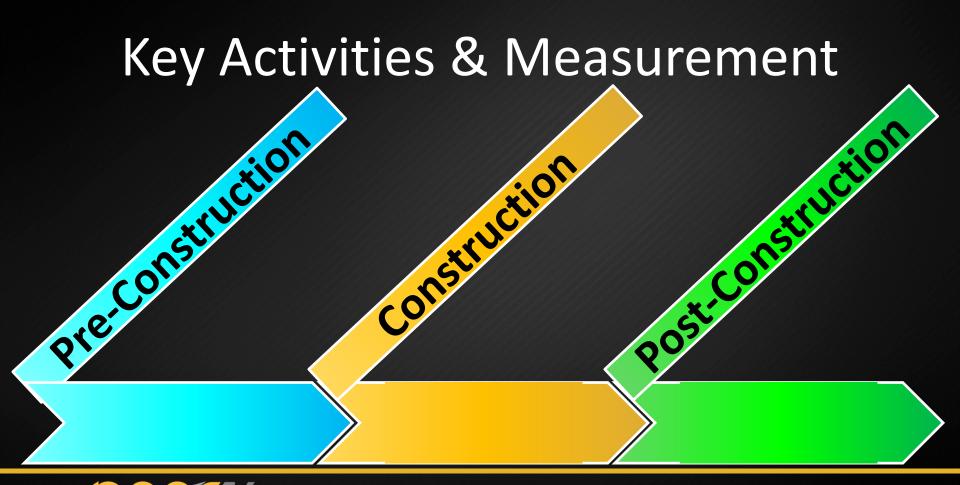

Common Disputes

QC/QA Test Results (Comparisons)

Job Mix Formula (Approval/Changes)

Change Materials (Aggregates/Binders)

Performance (Premature Distress)



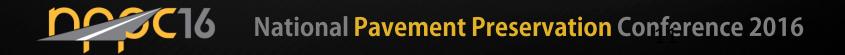
Resolution

- Address Likely Issues Prior to Construction
- Public Agency/Contractor/Material Supplier
 - Resolve Recurring Issues
 - Pre-construction Meeting
 - Specifications Address Dispute Resolution
 - Meetings/Information Exchange
- Performance Warranty
- Third Party
- Legal

Outline

- Introduction
- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary

Pre-Construction


- Mixture Design
 - Aggregate Properties
 - Binder Properties
 - Additive Properties
 - Mixture Properties
 - Proportions (Job Mix Formula)
 - Verification
- Equipment Calibration
- Laboratory Accreditation
- Personnel Certification

Construction

- Process Control Tests
- Quality Control Tests
- Quality Assurance Tests
- Independent Assurance Tests
- Certifications
- Inspection
- Quality Management System

Post-Construction

- Measurement & Payment
- Final Acceptance
- Performance (Warranty)

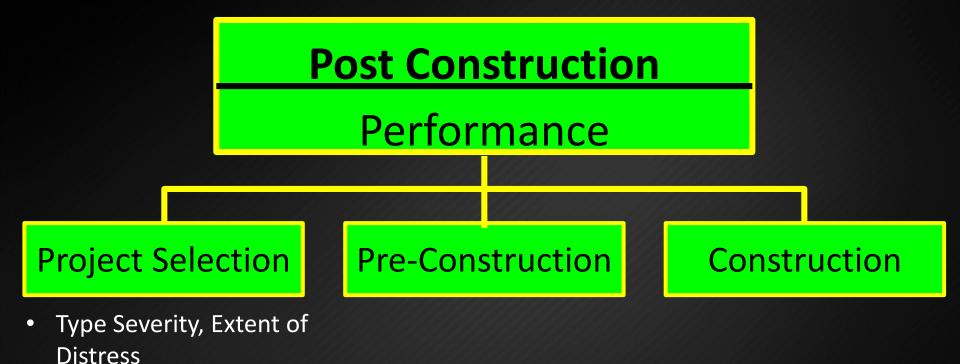
Pre-Construction

Construction

Job Mix Formula

Job Mix Formula

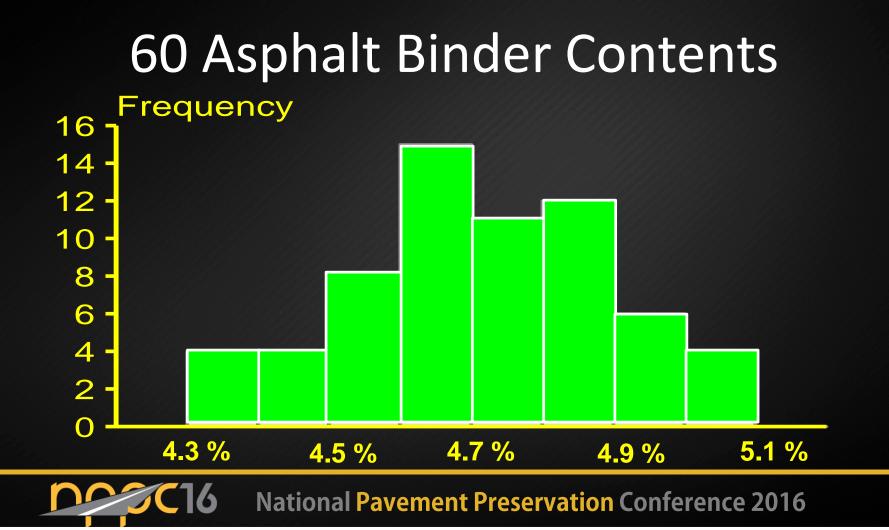
Material Properties


Mixture Properties

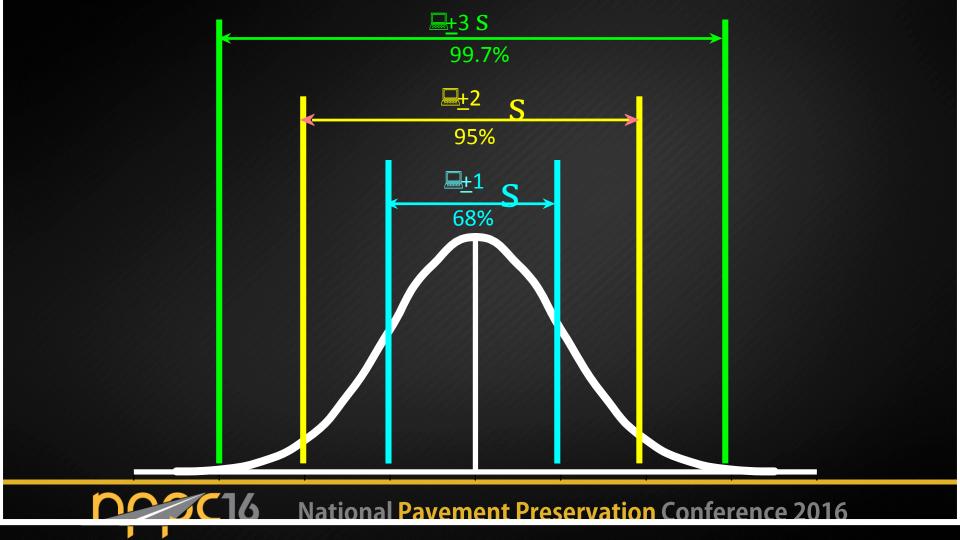
Mixture Properties

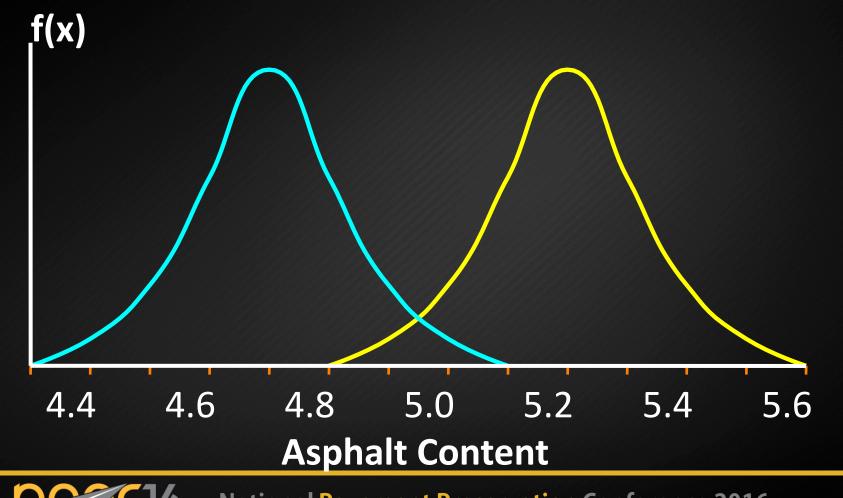
Quality Control

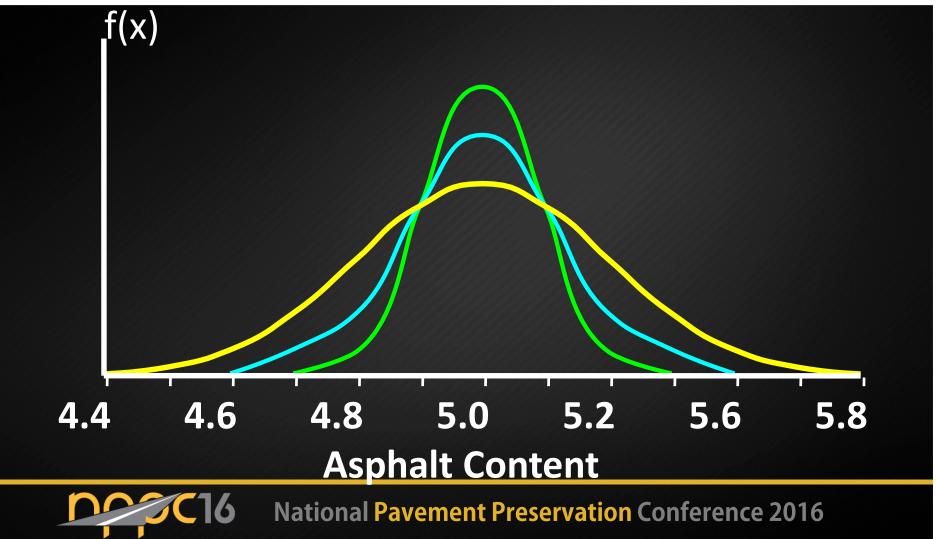
Quality Assurance



- Thickness Design
- Traffic
- Constraints


Outline


- Introduction
- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary



Statistical Representation of Variability

- Mean -x
- Standard Deviation s
- Coefficient of Variation $-\frac{s}{x}$

QC/QA and Variability

Variability = variability + variability + variability

(QC/QA) (sampling) (test method) (mat./const.)

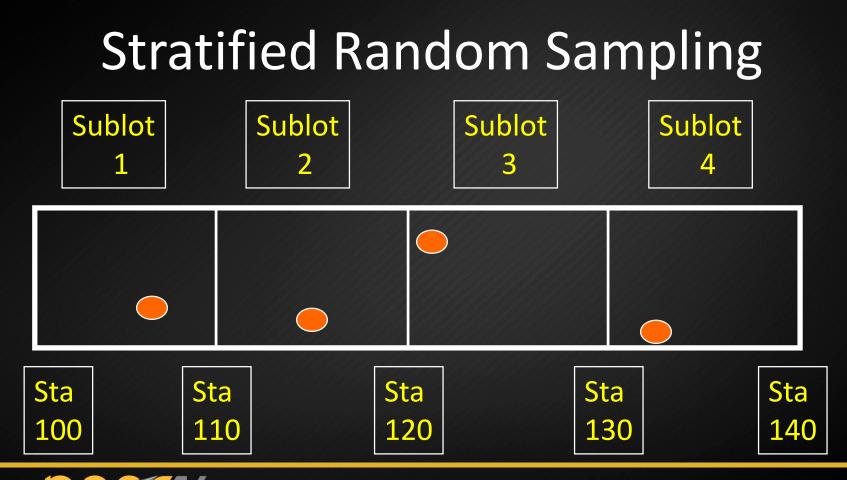
$S^{2}_{QC/QA} = S^{2}_{s} + S^{2}_{t} + S^{2}_{m/c}$

Sources of Variability

- Sampling random variation in sampling methods or procedures
- Testing random variation in testing performance and equipment

Sampling + testing variability = about 50% of the variation in test results

- Material random natural variation
- Construction variation inherent in production and construction methods

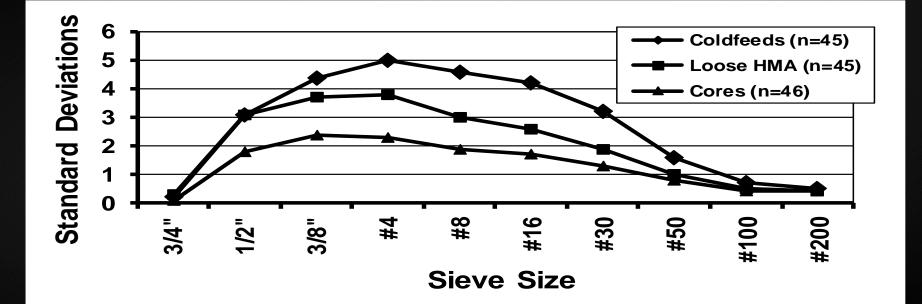

Outline

- Introduction
- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary

Effect of Number of Samples and Associated Risk

Number of	Contractor's	Owner's Risk		
Samples	Risk	(β)		
(n)	(α)			
1	0%	84%		
1	5%	50%		
4	0%	16%		
4	5%	2.5%		

Point of Sampling


- Asphalt
 - Plant Tank or
 Middle 1/3 of
 Truck Load
 - Bleed off & Discard
 Prior to Sampling
 - -Sample & Seal

Point of Sampling

- Asphalt Content
 - Loose Plant, Truck, Mat (entire lift), Windrow, or Paver (auger) Samples, Cores
- Aggregate Gradation
 - Coldfeeds or hot bins
 - Extracted from HMA (loose samples or cores)
- Lab Compacted Volumetrics
 - Loose Plant, Truck, Mat (entire lift), Windrow, or Paver (auger) Samples

Effect of Sampling Location on Gradation Variability

Outline

- Introduction
- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary

Within Laboratory Precision - (Single Operator Precision)

Designations		Description	Single Operator Precision			
AASHTO ASTM Method Method	Standard Deviation		Acceptable Range of			
	(1S)		Two Results (D2S)			
	AASHTO		ASTM	AASHTO	ASTM	
T228	D70	Asphalt Cement Specific Gravity	0.0008	0.0008	0.0023	0.0023
T85	C127	Coarse Aggregate Specific Gravity	0.009	0.009	0.025	0.025
T84	C128	Fine Aggregate Specific Gravity	0.011	0.011	0.032	0.032
T166 D272	02726	Bulk Specific Gravity of Compacted	*	0.0124	*	0.035
	DZ720	Bituminous Specimens				
T209	D2041	Theoretical Maximum Specific	0.0040	0.0040	0.011	0.011
		Gravity of Bituminous Mixture	(0.0064)	(0.0064)	(0.018)	(0.018)

* - "Duplicate specific gravity results by same operator should not be considered suspect unless differ more than 0.02."

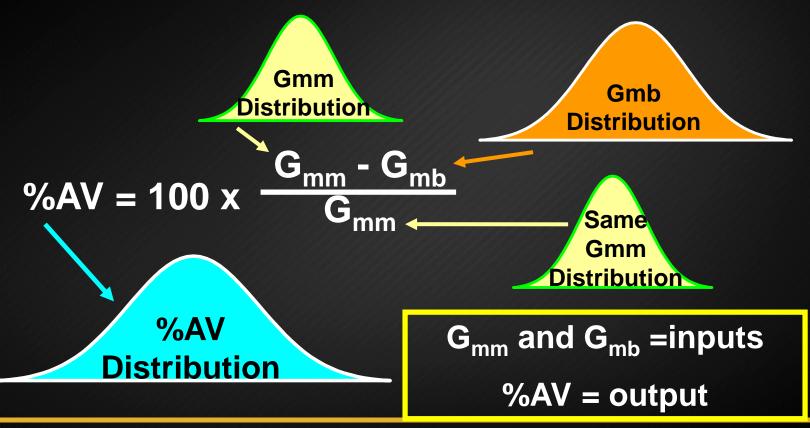
() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Within Laboratory Precision - (Single Operator Precision)

Designations		Description	Single Operator Precision				
AASHTO ASTM	Standard Deviation		Acceptable Range of				
	(1S)		Two Results (D2S)				
Method	Method		AASHTO	ASTM	AASHTO	ASTM	
T228	D70	Asphalt Cement Specific Gravity	0.0008	0.0008	0.0023	0.0023	
T85	C127	Coarse Aggregate Specific Gravity	0.009	0.009	0.025	0.025	
T84	C128	Fine Aggregate Specific Gravity	0.011	0.011	0.032	0.032	
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0124	*	0.035	
T209 D2	D2041	Theoretical Maximum Specific	0.0040	0.0040	0.011	0.011	
		Gravity of Bituminous Mixture	(0.0064)	(0.0064)	(0.018)	(0.018)	

* - "Duplicate specific gravity results by same operator should not be considered suspect unless differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").


Between Laboratory Precision - (Multilaboratory Precision)

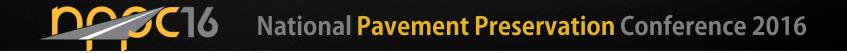
Designations			Multilaboratory Precision			
AASHTO ASTM		Description	Standard Deviation		Acceptable Range of	
			(1S)		Two Results (D2S)	
Method	Method		AASHTO	ASTM	AASHTO	ASTM
T228	D70	Asphalt Cement Specific Gravity	0.0024	0.0024	0.0068	0.0068
T85	C127	Coarse Aggregate Specific Gravity	0.013	0.013	0.038	0.038
T84	C128	Fine Aggregate Specific Gravity	0.023	0.023	0.066	0.066
T166	D2726	Bulk Specific Gravity of Compacted	*	0.0269	*	0.076
		Bituminous Specimens				
T209	D2041	Theoretical Maximum Specific	0.0064	0.0064	0.019	0.019
		Gravity of Bituminous Mixture	(0.0193)	(0.0193)	(0.055)	(0.055)

* - "Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Monte Carlo Simulation

Summary and Conclusions


 "Acceptable" Variability Associated with the Measurement of the Properties Required to Determine HMA Volumetrics can Have a Significant Impact on Calculated Volumetric Properties

Summary and Conclusions

 Within Laboratory Test Method Variability May Lead to Differences in AV and VMA of 1.0⁺% for Any Given Mix Design

 These Differences Translate into Potential Differences of 0.7% in Optimum Asphalt Content Selection

Summary and Conclusions

- Between Laboratory Test Method Variability May Lead to Differences in AV and VMA of over 2.0% for Any Given Mix Design
- These Differences Translate into Potential Differences of Over 1.0% in Optimum Asphalt Content Selection

Outline

- Introduction
- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary

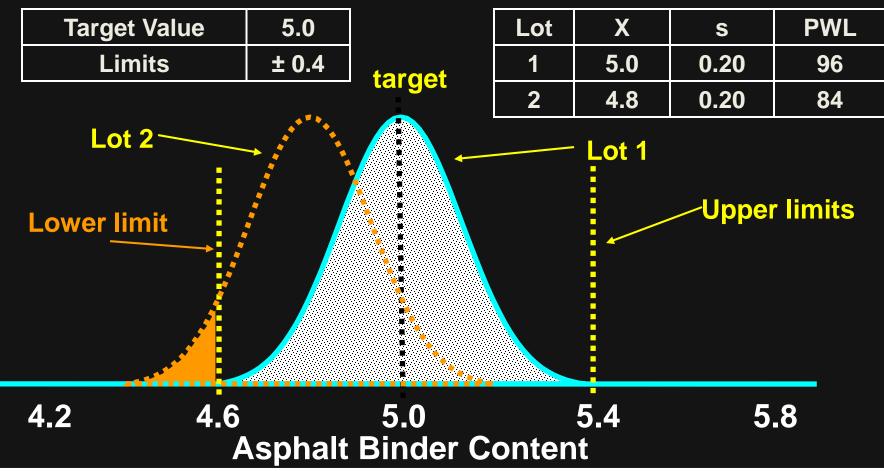
Sources of Variability

- Sampling random variation in sampling methods or procedures
- Testing random variation in testing performance and equipment

Sampling + testing variability = about 50% of the variation in test results

- Material random natural variation
- Construction variation inherent in production and construction methods

Typical Variability


Property	Standard Deviation(s)
Asphalt Content, %	0.25
% pass 4.75 mm, %	3.0
% pass 2.36 mm to 0.15 mm, %	2.0
% pass 0.075 mm, %	0.7
Air Voids, %	1.0
VMA, %	1.5
VFA, %	5.0

Why Understand Testing Variability

- Provide quality product to our customer
- Remain in business
- Establish specification limits
- Predict pay factors

Percent within Limits

Outline

- Introduction
- Key Activities & Measurements
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Summary

Fog Seal

- Asphalt Quality
 - Transverse
 - -Longitudinal
- Variability of Surface

Depric 16 National Pavement Preservation Conference 2016

Slurry Seal/Micro-Surface

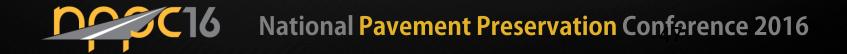
- Mix Design
- Mix Properties (Pre-Construction/Construction)
- Individual Material Properties
- Individual Mixture Quantities
 - Binder
 - Aggregate
 - Additives
- Quantities Placed
 - Transverse
 - Longitudinal

Chip Seal

- Design
- Individual Material Properties
- Quantity Placed (Aggregate/Asphalt)
 - Transverse
 - Longitudinal

Depric 16 National Pavement Preservation Conference 2016

Asphalt Mixture


- Mix Design
- Mix Properties
- Individual Material Properties
- Individual Mixture Quantities
- Quantity Placed

Resolution

- Solve Recurring Issues prior to Construction
 - Sample Location
 - Test Variability
 - Reasonableness of Specification
- Pre-Construction Meeting
- Specification Clear Method for Solving Disputes
- Public Agency/Contractor/Material Supplier Meetings
- Partial Pay
- Performance Warranty
- Arbitration
- Legal

Remember...

- Time is Money
- Remove & Replace Costly
- Owner Must Be Satisfied

