Effect of Bridge Preservation on General Condition Ratings

George Hearn
University of Colorado Boulder
General Condition – WBPP Bridges

![Bar chart showing population distribution by GCR]
General Condition – Progression

![Population](chart1)

![GCR](chart2)
Simple Deterioration

Average Values

Years

GCR

0 10 20
Progression – Simple Deterioration

![Graph showing the progression of simple deterioration over years. The graph illustrates the decline in GCR with increasing years for both population and simple categories.]
GCR as Outcome

Population

Simple
Preservation is Difference

![Bar chart showing preservation over GCR values]
Preservation Fraction α

α

$(1-\alpha)$

Preserve

Simple

Population

GCR

Pct

Preservation Fraction α
Preservation Fraction α

$WBPP \alpha = 0.50$
α, Bridge Owner

![Graph showing GCR over years for Local, State, and Federal ownership categories.](image-url)
α, Bridge Material

![Graph showing the relationship between GCR and years for different bridge materials (Steel, Timber, RC, PS). The graph indicates differences in performance over time.]
$\alpha, \text{ Functional Class}$

Graph showing the relationship between GCR (Growth Curve Ratio) and years for different types of highways: Arterial, Interstate, and Local. The x-axis represents years, and the y-axis represents GCR. The graph indicates the depreciation rate of different types of highways over time.
α, NHS

[Graph showing GCR against Years for NHS and non-NHS with a reference point $\alpha = 0.50$.]
Projects

<table>
<thead>
<tr>
<th>General Condition</th>
<th>Inventory</th>
<th>Disposition, Annual</th>
<th>Addition, Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deck Area</td>
<td>Annual I/O</td>
<td>No Action</td>
</tr>
<tr>
<td>Good</td>
<td>267</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Fair</td>
<td>300</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Poor</td>
<td>33</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Deck Area, Million Sq Feet
WBPP States

$\alpha = 0.06$

$\alpha = 0.67$
Owner

Local $\alpha = 0.44$

State $\alpha = 0.67$
Material

Timber $\alpha = 0.20$

RC $\alpha = 0.51$
Functional Class

Local $\alpha = 0.47$

Interstate $\alpha = 0.58$
\[\alpha, \Delta \text{Service Life} \]

\[
\text{Simple Life} = \sum_{gcr} \mathbb{E}[t_{gcr}]
\]

\[
\text{Population Life} = \frac{\text{Population}}{\text{Annual Replacement}}
\]
α, General Condition

$$GCR = \frac{\sum GCR_i \times Deck\ Area_i}{\sum Deck\ Area_i}$$
\(\alpha, \) CFR 490.4xx

Pct Good vs \(\alpha \)

![Graph showing Pct Good vs \(\alpha \)]

Pct Poor vs \(\alpha \)

![Graph showing Pct Poor vs \(\alpha \)]
α Targets, WBPP

Criteria:
Life ≥ 100 years
Poor Area ≤ 10%

<table>
<thead>
<tr>
<th>α</th>
<th>Life, years</th>
<th>% Poor Area</th>
<th>% Good Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>100</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>0.30</td>
<td>126</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td>0.31</td>
<td>163</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>0.32</td>
<td>100</td>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>0.34</td>
<td>154</td>
<td>10</td>
<td>51</td>
</tr>
<tr>
<td>0.36</td>
<td>111</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>0.40</td>
<td>120</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>0.46</td>
<td>136</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>0.48</td>
<td>100</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>0.49</td>
<td>100</td>
<td>8</td>
<td>55</td>
</tr>
<tr>
<td>0.50</td>
<td>115</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>0.50</td>
<td>125</td>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>0.56</td>
<td>151</td>
<td>10</td>
<td>51</td>
</tr>
</tbody>
</table>
Cost?

<table>
<thead>
<tr>
<th>General Condition</th>
<th>Inventory</th>
<th>Disposition, Annual</th>
<th>Addition, Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deck Area</td>
<td>No Action</td>
<td>New Bridge</td>
</tr>
<tr>
<td></td>
<td>Annual I/O</td>
<td>Replace</td>
<td>Preserved Bridge</td>
</tr>
<tr>
<td>Good</td>
<td>267</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Fair</td>
<td>300</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Poor</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Rehabilitation $\ ?**
- **Replace $**
Summary

• Condition is result of deterioration + preservation

• ‘Simple’ deterioration
 • Two segments of inventory
 • α preservation measure
 • Flow of projects

• Preservation effect on
 • Service life
 • General condition
 • Performance measures
Effect of Bridge Preservation on General Condition Ratings

George.Hearn@colorado.edu