

### Motivation

- Safety impact of snow and ice storms (USDOT, 2014)
  - 24% of annual weather-related vehicle crashes on snowy or icy pavement
  - Over 1,300 fatal crashes in vehicle crashes on snowy or icy roads
- Economic implications
  - \$300-\$700 M for 1-day shutdown
     (American Highway Users Alliance,
     2010)
  - 20% of state DOT maintenance budgets for snow and ice control (USDOT, 2014)
  - Over \$110,000 cost per shift on average for snow removal operations (District of Columbia, 2010)



### Contributions

Strategic Infrastructure Decisions

Snow Plow Route Planning

Dynamic Fleet Management

- Resource planning and allocation:
  - Resource replenishment facilities
  - Roadway capacity expansion
- Route planning
- Fleet assignment
- Resource replenishment
- Dynamic fleet scheduling in long-storm conditions:
  - Uncertain demand
  - Service disruption

Decision support tool

## Outline

- Problem Statement
- Background
- Model Development
- Solution Approach
- Numerical Results
- Summary

## **Problem Statement**



## **Problem Statement**

- Considerations:
  - Random availability of the tasks and trucks
    - New trucks and tasks become available via some random process
  - Truck repositioning
    - There is no available task
    - Tasks at other route have higher priority while service is disrupted
  - Truck deadheading

GPS Satellites

## **Problem Statement**



Dynamic Programming (DP) Methods

| Method         | Objective/Focus                  | Researcher                                              |
|----------------|----------------------------------|---------------------------------------------------------|
| Traditional DP | Discrete state and action spaces | Puterman 1994                                           |
| Forward DP     | Monte Carlo                      | Bertsekas and Tsitsiklis 1996,<br>Sutton and Barto 1998 |

- Not as sensitive to large state spaces, but suffer from large action spaces
- Require the ability to estimate the value of the system being in a particular state
- Convergence proofs are only available under very strong assumptions

 Stochastic Linear Programming Methods (Infanger 1994, Kall & Wallace 1994, Birge & Louveaux 1997, Powell 2002)

| Method                                     | Objective/Focus                                                                                           | Researcher                                                                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Two-stage<br>stochastic linear<br>programs | Large-scale optimization problems subject to non-anticipativity constraints                               | Dantzig 1955, Rockafellar & Wets<br>1991                                       |
|                                            | Approximate the second-<br>stage recourse function<br>(linearization methods,<br>static/dynamic sampling) | Ermoliev 1988, Ruszczynski 1980,<br>Van Slyke & Wets 1969, Higle &<br>Sen 1991 |
| Multistage problems                        | Nested Benders algorithm                                                                                  | Birge 1985                                                                     |
|                                            | Sampling-based methods                                                                                    | Higle & Sen 1991, Pereira & Pinto<br>1991, Chen & Powell 1999                  |

Approximation Methods in the Context of Fleet Management

| Method                                                             | Objective/Focus                                                                                                                                                       | Researcher                                                                                      |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Methods for continuous flows                                       | Designed for non-integer flows                                                                                                                                        | Jordan & Turnquist 1983,<br>Powell 1986                                                         |
| Approximations that naturally produce integer solutions            | Not designed for problems with time windows (difficult to apply)                                                                                                      | Powell 1987, Frantzeskakis<br>& Powell 1990, Cheung &<br>Powell 1996, Powell &<br>Carvalho 1998 |
| Linear approximation with a multiplier adjustment procedure (LAMA) | Works only on deterministic problems                                                                                                                                  | Carvalho & Powell 2000                                                                          |
| CAVE (Concave Adaptive Value Estimation) algorithm                 | <ul> <li>Construct a concave, separable, piecewise-linear approximation of value function</li> <li>More flexible and responsive than linear approximations</li> </ul> | Godfrey & Powell 2001,<br>2002                                                                  |

### Online Vehicle Routing Problem

| Method                                                                                          | Objective/Focus                                                                                                                             | Researcher                                         |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Online routing algorithms w/o service flexibility and rejection options                         | Minimize the time to visit a set of locations that are revealed incrementally over time                                                     | Jaillet & Wagner 2007,<br>Jaillet & Lu 2011, Yang  |  |
| Rolling horizon technique using a mixed integer programming formulation for the offline version | Online fleet assignment and scheduling Minimize costs of empty travels, jobs' delayed completion times, and job rejections w/o time windows | Yang, Jaillet, &<br>Mahmassani 1998,<br>2002, 2004 |  |
| Simulation framework using real-time info about vehicle locations and demands                   | Dynamic dispatching, load acceptance, and pricing strategies                                                                                | Regan, Mahmassani,<br>& Jaillet 1996               |  |

#### Network:

T: the number of time periods in the planning horizon  $\Gamma = \left\{0,1,...,T-1\right\}, \text{ the times at which decisions are made}$   $\Psi$ : the set of physical routes in the network

#### Trucks and Tasks:

For each  $t \in \Gamma$  and  $i \in \Psi$ ,

 $\hat{K}_{it}$ : the number of trucks that first become available on route i at time t;  $\hat{K}_t = (\hat{K}_{it})_{i \in \Psi}$ 

 $\kappa_{it}$ : the number of trucks available on route i at time t before any new arrivals have been added in;  $\kappa_t = (\kappa_{it})_{i \in \Psi}$ 

 $\kappa_{it}^+$ : the total number of trucks that are available to be used on route i at time t

 $\hat{A}_{it}$ : the set of tasks that first become available on route i at time t;  $\hat{A}_t = (\hat{A}_{it})_{i \in \Psi}$ 

 $A_{it}$ : the set of tasks available on route i at time t before the new arrivals in  $\hat{A}_{it}$  are added to the system;  $A_t = (A_{it})_{i \in \Psi}$ 

 $A_{it}^+$ : the set of tasks available to be services on route i at time t, including the newly popped - up tasks

 $A_{it}^d$ : the set of deadheads required to reach the available tasks on route i at time t

 $W_t = (\hat{k}_t, \hat{A}_t)$ , represents the new info arriving in time period t

 $(\mathbf{W}_t)_{t=0}^T$ : stochastic info process, with realization  $\mathbf{W}_t(\omega) = \omega_t = (\hat{\kappa}_t(\omega), \hat{A}_t(\omega))$ 

**Decision Variables:** 

$$\mu_i^t = \begin{cases} 1, & \text{if a truck travels on route } i \in \Psi \text{ at time } t \in \Gamma, \\ 0, & \text{o. w.} \end{cases}$$

Repositioning  $\eta_{ij}^t$  = number of trucks reposition from  $i \in \Psi$  to  $j \in \Psi$  at time  $t \in \Gamma$ Task Performance

**Truck Inventories** 

**State Variables:** 

$$S_t = \left\{ \kappa_t, A_t \right\}$$



#### Objective Function:

 $c_{ii}^{p}$ : cost of repositioning from route i to route j (\$ / mile)

 $c_a^r$ : the benefit from plowing task  $a \in A_{it}^+$  (\$ / mile)

 $c_a^d$ : the cost of deadheading link  $a \in A_{it}^d$  (\$ / mile)

 $\lambda_{i,r}^{t}$ : the number of tasks on route i at time t

 $\pmb{\lambda}_{i.d}^t$  : the number of deadheads required to reach the tasks on route i at time t

Total benefit gained from decisions at time t Total repositioning cost at time t

$$f_t(\mu_t, \eta_t) = \sum_{i \in \Psi} \left\{ \mu_i^t \left( \sum_{a \in \mathcal{A}_{it}^+} c_a^r \lambda_{i,r}^t - \sum_{a \in \mathcal{A}_{it}^d} c_a^d \lambda_{i,d}^t \right) - \left( \sum_{i \in \Psi} \sum_{j \in \Psi} c_{ij}^p \eta_{ij}^t \right) \right\}, \tag{1}$$

subject to

$$\sum_{i \in \Psi} \eta_{ij}^t(\omega) + \sum_{i \in \Psi} \mu_i^t(\omega) = \mathcal{K}_{it} + \widehat{\mathcal{K}}_{it}, \, \forall i \in \Psi,$$
(2)

$$\mu_i^t(\omega) \in \{0, 1\}, \forall i \in \Psi, \text{ and}$$
 (3)

$$\eta_{ii}^t(\omega) \ge 0, \forall i, j \in \Psi,$$
 (4)

# Solution Approach

 $A_t^e$ : the set of tasks that expire in time period t

System
Dynamics 
$$\begin{cases} \mathcal{A}_{t+1} = \mathcal{A}_t^+ \setminus \mathcal{A}_t^e, \\ \mathcal{K}_j^{t+1}(\omega) = \sum_{i \in \Psi} \eta_{ij}^t(\omega) + \sum_{j \in \Psi} \mu_j^t(\omega), \, \forall j \in \Psi, \end{cases}$$
(5)

Dynamic Programming

$$\underset{\mu_0,\eta_0}{\text{maximize}} f_0(\mu_0,\eta_0) + \mathbb{E} \left\{ \sum_{t \in \Gamma \setminus 0} \underset{(\mu_t,\eta_t)}{\text{maximize}} f_t(\mu_t,\eta_t) \right\}$$



$$\widetilde{V}_{t}(\mathcal{K}_{t},\omega) = \underset{(\mu_{t}(\omega),\eta_{t}(\omega))}{\operatorname{maximize}} f_{t}(\mu_{t}(\omega),\eta_{t}(\omega)) + \widehat{V}_{t+1}(\mathcal{K}_{t+1}(\omega)),$$
(7)

subject to

$$\hat{V}_{t}(\kappa_{t}) = \sum_{i \in \Psi} \hat{V}_{it}(\kappa_{it})$$
 Value Function Approximation

#### Initialization

For the piece-wise linear approximation of  $\hat{V}_{it}(\mathcal{K}_{it})$ , let  $v_{it}^0 = 0, u_{it}^0 = 0, \forall i \in \mathcal{V}, t \in \Gamma$ 

#### **Forward Simulation**

Generate a random sample  $\omega$ , then for  $t=0,1,...,\Gamma-1$ , Determine  $A_t(\omega)$ 



Store  $\pi_{it}^-$  and  $\pi_{it}^+$ 

#### **CAVE Update**

Update the value function approximation  $\hat{V}_{it}(\mathcal{K}_{it})$ 

# Solution Approach

Fitting Concave Functional Approximations (CAVE\*)



 $v_{it}^{0} = 0, u_{it}^{0} = 0$ Initialize parameters  $\varepsilon^{-}, \varepsilon^{+}, \alpha$ 

Find gradients  $\pi_{it}^-$  and  $\pi_{it}^+$  for a given  $\omega$ 

$$n_{it}^{-} = \min \left\{ n \in \mathbb{N} : v_{it}^{n} \le (1 - \alpha) v_{it}^{n+1} + \alpha \pi_{it}^{-} \right\}$$

$$n_{it}^{+} = \min \left\{ n \in \mathbb{N} : v_{it}^{n} < (1 - \alpha) v_{it}^{n-1} + \alpha \pi_{it}^{+} \right\}$$

$$UI = \left[ \min \left\{ \kappa_{it} - \varepsilon^{-}, u^{n_{it}^{-}} \right\}, \max \left\{ \kappa_{it} + \varepsilon^{+}, u^{n_{it}^{+}} \right\} \right)$$
Create new break points

$$v_{it,new}^{n} = \alpha \pi_{it} + (1 - \alpha) v_{it,old}^{n},$$
where 
$$\begin{cases} \pi_{it} = v_{it}^{-}, & \text{if } u_{it}^{n} < K_{it} \\ \pi_{it} = v_{it}^{+}, & \text{o.w.} \end{cases}$$

### **Numerical Results**

| Problem Characteristics             | Attribute Values                                      |                                                |       |
|-------------------------------------|-------------------------------------------------------|------------------------------------------------|-------|
| number of routes                    | Lake County, IL optimal truck routes                  |                                                |       |
| number of trucks                    | equal to the number of routes, but subject to failure |                                                |       |
| planning horizon length, T          | 8 time periods                                        | All Truck Routes                               |       |
| number of tasks over simulation     | from Lake County, IL task links*                      | <b>k</b> 245                                   |       |
| time period length (fixed)          | 20 min                                                | 6<br>-7<br>-8                                  |       |
| net task revenue per mile           | \$10                                                  | 9<br>10<br>11                                  |       |
| repositioning cost per mile         | \$1                                                   | 12<br>13<br>14                                 | V     |
| deadhead cost per mile              | \$1                                                   | 16<br>— 17<br>— 18                             |       |
| Tasks become available over time of | on routes                                             | 19 20 21 22 23 24 25 SaltDomes LCDOT Network I | links |

- The algorithm is coded in C++ and run on a desktop computer with 2.67 GHz CPU and 3 GB memory
- CPLEX is called to solve the forward simulation.
- Number of routes in the last iteration = 14

## **Numerical Results**



- Comparison with alternative algorithms
  - 5.8% difference over the planning horizon



- Dynamic Programming with CAVE Update
- Greedy Algorithm

## Summary

- Dynamic fleet management for snow control activities under uncertainty (operations)
  - Approximate Dynamic Programming (ADP) including a forward simulation followed by an update
  - Case study based on LCDOT truck routes
  - Comparison with a greedy approach

