

The Hidden World of Fluid Management

A Deeper View Into Engine Health Interpretation

TRB 94th ANNUAL MEETING, WASHINGTON DC 12 JANUARY 2014

Presented by: Diego Navarro Condition Based Management Consultant

THE HIDDEN WORLD OF FLUID MANAGEMEENT

AGENDA

- Modern engines complexity
- Fluids change over the years
- The importance of standard deviations by type of engine and application
- Key observations in oil, coolant and fuel results
- The complexity of comprehensive fluid interpretation

OBJECTIVES

- Understand how engines and fluids have changed over the years
- Grasp the importance of standard deviation tables
- Learn the need for deeper fluid interpretation
- Take some of the challenges home and implement them

MODERN ENGINES T3, IT4, FT4

Top ring location and cooled piston head Cooled EGR Variable geometry turbocharger

ENGINES CHANGES OVER THE YEARS

Cooled Turbocharger

- Pilot injection and ramp-up injection are feasible thanks to electronics, in pursuit of stoichiometric combustion
- □ For this reason, engines run hotter
- Room for mistakes in maintenance has narrowed, especially on engine overheating tolerance, TBN/TAN ratio and fuel cleanliness

- Engines breathe better through additional valving and more advanced turbocharging
- Engines need to comply with emissions restrictions

FLUIDS CHANGES OVER THE YEARS

- Oils contain less TBN and still need to cope with increased acid neutralization and oxidation resistance requirements
- Oil flow has increased so it can be used to complement cooling
- Coolants- Because of added heat, coolants require a much more oxidation stable additive package
- Fuel is injected at pressures that are 12 times higher than 20 years ago (Injectors don't last as in the past)
- Fuel needs to be much cleaner than hydraulic fluid, and needs help from diverse fuel additives

The rules of the game in maintenance have changed!

APPLICATION IMPACT

- Engines still need to cope with light loads and long idling periods
- Engines still need to perform in high altitudes
- Application could involve an intermittent or stable continuous load
- Engines may experience fuel dilution as part of application and/or design

NEW CHALLENGES

- A deeper knowledge on machine health interpretation is needed
- We cannot continue doing what we have been accustomed to doing
- There are new rules in the game that you are expected to play by

A better fluid analysis interpretation from labs and users is a must!

WEAR TABLES

- Only <u>Identical engines</u> driving <u>identical vehicles</u> in similar applications could use a <u>single wear</u> <u>table</u>, because:
 - Oil sump capacity could be different
 - Power settings might be different
 - Injection mapping could be different
 - Liner wear and piston erosion signature will be different
 - Oil consumption is going to be different
 - Oil dilution could be different... so,

You need dedicated wear tables to really squeeze the power of oil analysis!

WEAR TABLES WHAT VALUES ARE CONSIDERED NORMAL?

- What are normal readings for iron in 500 hours?
- And like this, there are many more questions...
- Lab precision has no meaning if you don't have a table developed for your engine

The Questions?

How much metal is too much wear?

THE ANSWER... THE USE OF STANDARD DEVIATION TABLES

Standard deviations tables allow us to measure engine behavior against its model/application data...

> Standard Deviation is a measure of how spread out the numbers are from normalized interval samples

> Formula: It is the square root of the Variance

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Variance: Is the average of

the squared differences from the Mean

STANDARD DEVIATIONS

Median Value

- The ideal distribution of wear values follows the bell shape curve as in the graphic
- In the example, 68.27% of the population falls within 1 StdDev+ and 1 StdDv-
- These values are considered normal
- The critical values start beyond +/-2 StdDev

The Standard Deviation is a measure of how spread out numbers are

Wear Sample Data Distribution

STANDARD DEVIATION TABLES EXAMPLE OF DIFFERENT MODELS

· Every type of engine is like a different child

Isuzu Engine			
850D Excavators			
per 500 hrs after break-in			
Limit if Hours are unknown is same as	Critical		
Filtered System	Normal	Abnorma	Critical
*Fe	<58	58	>89
Pb	<15	15	>25
Cu	<17	17	>30
Cr	<5	5	>10
Al	<50	50	>65
Ni (Report Only)	<5	5	>10
Ag (Report Only)	<2	2	>3
Sn (Report Only)	<5	5	>10
Na	<31	31	>50
K	<30	30	>50
Ti (Report Only) - Do Not Flag if Oil Additive	<5	5	>10
Si	<14	14	>21

Mercedes Engine			
ADTs models 350D and 400D per 500 hrs after break-in			
Filtered System	Normal	Abnormal	Critical
*Fe (Limit If Hrs are unknown is same as critical level)	<45	45	>70
Pb	<15	15	>25
Cu	<29	29	>60
Cr	<5	5	>10
*Al (Limit If Hrs are unknown is same as critical level)	<25	25	>35
Ni (Report Only)	<10	10	>17
Ag (Report Only)	<2	2	>3
Sn (Report Only)	<5	5	>10
Na	<70	70	>134
K	<30	30	>50
Ti (Report Only)	<5	5	>10
*Si (Limit If Hrs are unknown is same as critical level)	<15	15	>25

Isuzu Engine

Mercedes Engine

MEASUREMENTS HANDLED WITHOUT STANDARD DEVIATION CALCULATIONS

These contamination and physical properties values do not produce a bell shaped curve. The labs provide the maximum/minimum values and trigger points

- Sulfation
- Nitration
- Water
- Glycol
- Fuel
- PQ Index

- Oxidation
- Viscosity
- Viscosity shear
- TAN
- TBN

Contaminants

Physical Properties

KEY OBSERVATIONS WEAR METALS

Critical and non-critical metals

	Iron	Copper	Chrome	Aluminum	Tin	Lead	Nickel
Critical			X		X	X	X*
Non- Critical	X	X		X*			X*

Remember, your mission is not to react to wear metals only, but to understand why these are being produced and then addressing the root cause!

KEY OBSERVATIONSWEAR METALS - IRON (TIME DEPENDANT)

- Non-Critical Metals
 - ■Main source for iron readings is <u>liners</u>

Iron	Reasons for its presence
1	Hours of use (Time dependency)
2	Dirt contamination
3	Coolant leak
4	Low TBN high TAN
5	Severe fuel contamination
6	Valve guide and/or oil pump wear

Changing oil only addresses number 1 and 4, but does not fix root cause of the others, if any

KEY OBSERVATIONS WEAR METALS - COPPER

Non-Critical Metals

- Copper passivation from oil cooler overrides the readings from bearings and other components containing bronze alloys
- It is no longer a good measure of engine health

KEY OBSERVATIONS WEAR METALS - LEAD AND TIN

Critical Metals

■ Lead alone is not serious if within limits. <u>Lead and tin</u> together is bad news

Lead and Tin	Reasons for its presence
1	Acidic oil/Low TBN high TAN
2	Glycol contamination
3	Severe fuel contamination
4	Gross dirt contamination

KEY OBSERVATIONSWEAR METALS - CHROMIUM

Critical Metals

Chromium comes from piston rings and typically goes hand in hand with iron.

Chromium	Reasons for its presence
1	Dirt contamination
2	Glycol contamination
3	Low TBN high TAN
4	Severe fuel contamination

KEY OBSERVATIONS CONTAMINANTS

	Si	Al	Na	K	Fuel	Soot	Water
Critical	X	X	X		X	X	X
Non- Critical	w/o Al	w/o Si	w/o K,Na,Si	If alone	If less than 6%	If less than 2%	If less than 2000 PPM

DIRT OR NOT DIRT THAT IS THE QUESTION

- Sican be several things:
- ☐ Dirt
- □ Silicone gasket maker
- Anti foaming additive
- Coolant silicates
- Al could be:
- ☐ Piston material
- □ Dirt

KEY OBSERVATIONS CONTAMINANTS - COOLANT

□ How to recognize it?

How do you determine if the leak is through liners?

□ Reduced copper readings -

Coolant leaks by liner cavitation

☐ How do you determine the coolant leak is through oil cooler

□By the high readings of copper in both, coolant and oil analysis

Lead (Pb) Iron (Fe) Aluminium (AI) Copper (Cu) Visual Appearance	Coolant Report	ppn ppn ppn ppn
Clarity		I
Control of the second s		
Petroleum Layer Sediment		
Sediment Color		
Sediment	1)	%
Sediment Color Physical / Chemical		%
Sediment Color Physical / Chemical Glycol Content(D332 Reserve Alkalinity (m Additional	i HCl/10ml)	%
Sediment Color Physical / Chemical Glycol Content(D332 Reserve Alkalinity (m	i HCl/10ml)	% *F

Coolant Leaks Through Oil Cooler

COOLANT Soot NFUEL

Mothbasie 100027)

GLYCOL OR NO GLYCOL THAT IS THE QUESTION

<u>Na</u> could be many things:

- □ Coolant
- Dirt
- Salt

K could be:

- Coolant
- Fertilizer
- □ Soap

FUEL CONTAMINATION

Viscosity Changes

Oils	NEW	50	125H	250H	350H	500 H	550 H
5W-30 Other	10.8 -10.4	10.3 - 9.4	9.3 - 8.4	9.3 -10.4	10.3 -11.4	11.3 - 12.4	12.3 - 13.4
10W-30	11.0 - 10.7	10.5 - 9.5	9.5 - 8.5	9.50 -10.5	10.5 - 11.5	11.5 - 12.5	12.5 -13.5
10W-40 Other	14.6 -14.0	14.1 - 13.1	13.1 -12.1	13.1 - 14.1	14.1 - 15.1	15.1 - 16.1	16.1 - 17.1
15W-40	16.0 - 15.1	14.7 - 13.2	13.7 - 12.5	13.5 - 14.7	14.5 - 15.7	15.5 -16.7	16.5 - 17.5
0W- 40	15.8 - 15.2	14.2 - 13.5	13.2 - 12.2	13.0 - 14.2	13.5 - 14.5	14.2 - 15.2	15.2 - 16.2
15W-40 Other	14.8 -15-5	14 - 13	12.0 -13.0	12.8 - 13.8	13.8 -14.8	14.8 -15.8	15.8 -16.8

New Limits for Fuel Dilution Tier 3, iT4, fT4

Normal	Abnormal	Critical
4-5%	5 - 7%	>7%

SOOT CONTAMINATION FORMATION AND CONTROL

CARBON/LACKER/VARNISH SLUDGE BUILD UP MECHANISM

COOLANTS NEED FOR IMPROVED PERFORMANCE ADDITIVE EXHAUSTION COMPARISON

ELC Coolant

50,000 Miles

500,000 Miles

LINER CAVITATION & AL CORROSION BY NITRITE EXHAUSTION - CONVENTIONAL COOLANT

Common causes for the depletion of Nitrite:

- □ Stray current, the Nitrite changes into Ammonia NH₃
- Ammonia then converts in the coolant to Ammonium hydroxide NH4OH which is a highly alkaline substance
- Ammonia increases the pH (of the coolant) causing corrosion of nonferrous substances such as Aluminum
- Lack of Nitrite ends up in liner pitting (Cavitation)

FIELD TESTS FOR OA ELC PH, ORGANIC ACID AND GLYCOL CONCENTRATION

Still, you need to check for mixing and for the presence of metals using a formal lab test

ELC Coolant

Three ways sticks

DON'T FORGET ABOUT THE WATER SPECIFICATIONS FOR OEM'S MG/L

	Caterpillar	Cummins	Detroit	John Deere	ASTM
Chlorates	50	100	40	5	40
Sulfates	50	100	100	5	100
Total dissolved solids TDS	250	500	340	10	340
Total Hardness	100	300	170	5	40

FUEL ANALYSIS REPORT

Water, particulate, bacteria, sulfur, distillation, cetane index, bio diesel

WHERE AND WHEN TO TAKE FUEL SAMPLES? CATCHING THE GHOSTS CAN BE VERY ELUSIVE

Bulk Thanks ASTM D4057-06

- After refueling is best
 - Do it at the middle of the tank
 - Indicate that in the sample information form (SIF)
- If done it before refueling...
 - Do it in lower third
 - Not in outlet level
 - Indicate that in the sample information form (SIF)

Machines

- Fuel gets cleaner during engine operation
 - Timing is of importance to catch contamination
 - Collect sample during first hour after refueling
 - Indicate time of sample collection on sample information form

FUEL TANKS

Fuel tanks are generally exposed and stationary

They can accumulate big quantities of water, rust and bacteria

FUEL ADDITIVES DEPENDENCY

Protect Fuel - Diesel Fuel Conditioners, features:

- Detergent
- Dispersant
- Stability Improver
- Oxidation Inhibitor
- Cetane Improver
- Lubrication Improver
- Water Control
- Cold Flow Improver
- Anti-Settling Agent Wax

Protect Fuel - Keep Clean features:

- Detergent
- Dispersant
- Stability Improver
- Oxidation Inhibitor

Normal Use

Strong Cleaner

THE COMPLEXITY OF COMPREHENSIVE FLUID INTERPRETATION

Questions?