Thin Asphalt Concrete Overlays

Southeastern Pavement Preservation Partnership March 18, 2015

Outline

- NCHRP Synthesis Topic 44-07
- Purpose/Scope
- Use
- Design and Construction
- Performance, Maintenance, Rehab
- Case Studies
- Conclusions

Purpose/Scope

- Document current experience/research
- Agency/industry survey
 - 43 States
 - 8 Private Industry companies

Advantages of Thin Overlays

- Provides long service life (when placed over structurally sound pavements)
- Provides good riding surface
- Reduces noise (fine-graded mixes)
- Maintains grade and slope geometry
- Is easily maintained
- Is recyclable

Thin Overlay Definition

Previous Research

- NAPA (Newcomb, 2009) IS 135
- Zubek Cold Regions, 2012
- Montana (Cuelho, 2006)
- NCHRP Synthesis 222 (Zimmerman, 1995)
 Project/Treatment selection

Montana Survey

Preventive Maintenance <u>Treatment</u>	Average Service Life <u>(Years)</u>	Cost per Lane Mile (12 feet <u>wide)</u>
Thin Overlay	8.4	\$14,600
Double Chip Seal	7.3	\$12,600
Microsurfacing	7.4	\$12,600
Slurry Seal	4.8	\$6,600

Project/Treatment Selection Strategies (NCHRP Synthesis 222)

- Current condition rating
- Prediction models ("What if" scenario)
- Network Optimization models
- Find treatment that addresses deficiencies (may be affected by local policies/mandates)

Types of Thin Overlays

- 9.5 and 12.5mm Superpave
- 9.5 and 12.5mm SMA
- UTBWC
 - Arkansas
 - Illinois, Kansas, Louisiana, Minnesota, Vermont
- 4.75mm Superpave and SMA
- OGFC/PFC

UTBWC

Use of Thin Overlays

Pavements that are failing, or have already failed, cannot be successfully treated with a thin overlay alone.

PennDOT Use of Thin Overlays

Where Not To Use Thin Overlays

Ohio Decision Tree

NCAT Pavement Preservation Study

Section	18	19	20	21	22	23	24	25
Surface	4.75/PG 67-22	4.75/PG 67-22	4.75/PG 76-22	4.75/PG 76-22	UTBWC	4.75 50% RAP	4.75 5% Shingles	4.75 PG 88-22
Subsurface	Fibermat	Existing	Full-Depth Reclamation	Existing	Existing	Existing	Existing	Existing

- Aggregate Superpave quality standards
- Binder Often modified
- Compaction level 50 gyrations, locking point, other
- Testing constraints (due to thin layer)

RAP May Need to be Crushed/Fractionated

1% increase in moisture = 10-12% increase in drying cost while reducing production about 11%.

As a general rule, only 40-60% improvement in ride quality can be expected with a single layer of asphalt mix.

Performance, Maintenance, Rehab

21

Performance Measures (Purdue Study)

Performance Indicator	Roughness <u>(IRI)</u>	Condition <u>(PCR)</u>	<u>Rut Depth</u>
Threshold Used	110 in/mi (1.74 m/km)	85	0.25 in (6 mm)
Expected Life (Yrs.)	7 - 10	7 - 11	8 - 11

Maintenance (Fog Seal/Rejuvenator Application)

Application Rate

Service Life

- LTPP Data (Liu, 2013)
 - 341 Thin Overlay Sections
 - 40 States, 8 Canadian Provinces
- Typical life expectancy 7 to 9.5 years

Service Life

Environmental Differences

Construction Quality Standards -Interstate versus Secondary

Variation in material quality

Temporary Fix (They knew it wouldn't last under project conditions, but needed something to just get by temporarily)

Cost/Benefit of Preservation Treatments

- Wang, 2012 29 state agencies
 - Thin Overlays cost more initially
 - Extended pavement life the longest
- Oregon (Parker, 1993) 87 sites within state
 - Thin overlays most cost-effective
 - Particularly more effective for heavy traffic

Case Studies - Tennessee

Bid Prices for Preservation Treatments

	Microsurfacing	4.75 mm NMAS
Year	<u>(\$/sy)</u>	<u>(\$/sy)</u>
2013	2.02	2.24
2011	2.41	1.88
2009	2.15	2.09

Case Studies - Ohio Mileage vs Service Life of Thin Overlays

Conclusions

- Thin overlays routinely used as maintenance/preservation tool
- Thin overlays are economical
- Thin overlays extend life of concrete pavements
 - Act as insulation to reduce curling of slabs
 - Provides smoother surface
- Success depends on existing distresses
- Service life generally in 7 11 year range
- Some test procedures not reliable for thin layers