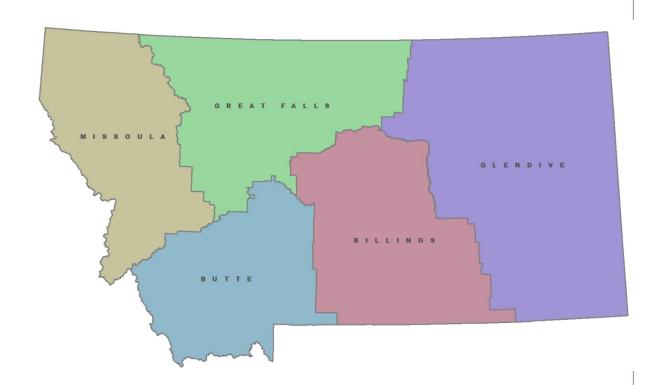
Montana's Approach to Pavement Preservation


MATT STRIZICH, PE STATE MATERIALS ENGINEER

MDT's Pavement System

	System	Centerline Miles	Lane Miles		
Assets Included	Interstate	1,192	4,770		
in TAMP	Non-Interstate NHS	2,990	6,625		
	All NHS	4,182	11,395		
	State Primary	2,575	5,188		
	Subtotal	6,757	16,583		
Assets not	Other State	4,563	9,220		
Included in	Off-system	8,430	16,668		
TAMP	Total	19,750	42,471		

- System Condition
- Treatment Recommendations
- Planning (HQ)
 - > Funding
 Distribution
- > Districts
 - > Engineering
 - > Maintenance
- Preservation is "institutionalized"

TEAM EFFORT

Is Preservation Working?

 "An important impact from this researchimplementation project was the importance of pavement preservation for extending the service life and reducing surface distress on flexible pavements and HMA overlays. It was predicted or estimated that the initial pavement preservation strategy applied to the HMA surface shortly after construction was extending the service life (equal distress conditions) of the flexible pavements and HMA overlays by about 5+ years."

Is Preservation Working?

> 2013 Reason Foundation Reports

- Montana Ranked 5th in the nation.
- Most improvement from 1989 2008 for overall performance and spending efficiency.
- Top 5
 - North Dakota
 - Virginia
 - Missouri
 - Nebraska
 - Montana

Planning

- > Performance Programming Process (P3)
 - Used to establish a funding distribution plan
 - Optimized system performance
 - 5 year Statewide Transportation Improvement Program
- > Pavement Preservation "Plugs"
 - Set by P3, by system.
 - Projects identified roughly 2 years prior to construction
- > Driven by MDT's Pavement Management System

Pavement Performance and Condition Recommended Treatments

12-MAR-15

MONTANA DEPARTMENT OF TRANSPORTATION

Page 1 of 35

Report Name: pvmsr0015

PVMS PAVEMENT CONDITIONS AND RECOMMENDED TREATMENTS

Survey Year: 2014 Run Year: 2015

Corridor Id: C000001

From the Idaho State Line easterly via Troy, Libby, Kalispell, Browning, Cut Bank, Shelby, Chester, Havre, Chinook, Malta, Glasgow, Wolf Point, and Culbertson to the North Dakota State Line.

Dept Rte	Beg Mp	End Mp	Bed	# Lanes	Width	F Dst	M	*** *** Ride	Perform Rut	ACI	MCI	*** *** *** *** *** *** *** *** *** **	Treatment Recommendations Construction 2017	Maintenance 2015	Maintenance 2017	Current Project
N-1	0.00	13.72	*	2	28	1	12	68.3	55.0	91.4	99.5	C_AC Thin Overlay	C_AC Minor Rehab_Rut	M_AC Thin Overlay	M_Maintenance Rut Fill	
N-1	13.72	20.10	*	2	43.	. 1	12	71.9	55.2	91.6	99.2	None	Do Nothing	None	Do Nothing	C_AC Thin Overlay
N-1	20.10	29.94	*	2	43.	. 1	12	83.1	69.1	99.0	100.0	Do Nothing	C_AC Crack Seal	Do Nothing	M_AC Crack Seal	
N-1	29.94	33.90	*	4	65	1	12	72.5	73.4	94.2	99.7	Do Nothing	C_AC Thin Overlay	Do Nothing	M_AC Thin Overlay	
N-1	33.90	37.97	*	4	65	1	12	62.5	48.3	93.8	99.8	C_AC Minor Rehab_Rut	C_AC Minor Rehab_Rut	M_Maintenance Rut Fill	M_Maintenance Rut Fill	
N-1	37.97	44.30	*	2	26	1	12	78.1	72.9	98.9	99.3	None	Do Nothing	None	Do Nothing	C_AC Thin Overlay
N-1	44.30	48.60	*	2	23.	. 1	12	81.0	70.6	98.1	99.0	None	Do Nothing	None	Do Nothing	C_Reconstruction
N-1	48.60	53.80	*	2	24	1	12	69.4	65.9	93.3	98.6	C_AC Thin Overlay	C_AC Thin Overlay	M_AC Thin Overlay	M_AC Thin Overlay	
N-1	53.80	57.03	*	2	31	1	12	88.1	68.0	98.0	99.6	C_AC Crack Seal & Cover	C_AC Crack Seal & Cover	M_AC Crack Seal & Cover	M_AC Crack Seal & Cover	
N-1	57.03	65.13	*	2	42	1	12	79.9	61.6	97.2	99.4	Do Nothing	Do Nothing	Do Nothing	Do Nothing	
N-1	65.13	68.98	*	2	36.	. 1	12	71.0	61.6	86.3	98.1	C_AC Thin Overlay	C_AC Thin Overlay	M_AC Thin Overlay	M_AC Thin Overlay	
N-1	68.98	80.68	*	2	40	1	12	80.0	55.6	93.4	99.6	Do Nothing	C_AC Minor Rehab_Rut	Do Nothing	M_Maintenance Rut Fill	
N-1	80.68	89.42	*	2	30	1	12	81.6	68.4	94.9	99.7	Do Nothing	C_AC Crack Seal	Do Nothing	M_AC Crack Seal	
N-1	89.42	99.41	*	2	27	1	12	77.4	76.9	96.2	99.3	Do Nothing	C_AC Crack Seal	Do Nothing	M_AC Crack Seal	
N-1	99.41	103.18	*	2	27	1	12	76.8	72.8	97.3	98.3	Do Nothing	C_AC Crack Seal	Do Nothing	M_AC Crack Seal	
N-1	103.18	106.45	*	2	27	1	12	68.0	51.7	59.5	96.2	C_AC Minor Rehab_Rut	C_AC Minor Rehab_Rut	M_AC Reactive Maintenance	M_AC Reactive Maintenance	
N-1	106.45	113.33	*	2	27.	. 1	12	73.9	45.9	83.3	98.0	C_AC Minor Rehab_Rut	C_AC Minor Rehab_Rut	M_Maintenance Rut Fill	M_Maintenance Rut Fill	
N-1	113.33	115.18	*	2	30	1	12	66.3	45.8	91.9	96.6	C_AC Minor Rehab_Rut	C_AC Minor Rehab_Rut	M_Maintenance Rut Fill	M_Maintenance Rut Fill	
N-1	115.18	119.53	*	2	32	1	12	75.9	67.1	93.0	99.4	Do Nothing	C_AC Thin Overlay	Do Nothing	M_AC Thin Overlay	
N-1	119.53	120.11	*	4	80	1	12	40.0	69.0	82.9	96.0	C_AC Major Rehabilitation	C_AC Major Rehabilitation	M_AC Reactive Maintenance	M_AC Reactive Maintenance	
N-1	120.11	120.83	*	4	65	, 1	12	51.6	74.2			C_PCC Major Rehabilitation	C_PCC Major Rehabilitation	C_PCC Minor Rehabilitation	C_PCC Minor Rehabilitation	
N-1	120.83	121.60	*	4	61.	. 1	12	55.5	60.7			C_PCC Major Rehabilitation	C_PCC Major Rehabilitation	C_PCC Minor Rehabilitation	C_PCC Minor Rehabilitation	
N-1	121.60	124.70	*	4	48	1	12	57.1	52.6	76.4	97.6	C_AC Major Rehabilitation	C_AC Major Rehabilitation	M_AC Reactive Maintenance	M_AC Reactive Maintenance	
N-1	124.70	128.90	*	4	80	1	12	81.7	58.1	85.4	98.9	C_AC Crack Seal & Cover	C_AC Crack Seal & Cover	M_AC Crack Seal & Cover	M_AC Crack Seal & Cover	
N-1	128.90	133.90	*	4	83	1	12	85.0	48.0	94.4	98.9	C_AC Minor Rehab_Rut	C_AC Minor Rehab_Rut	M_Maintenance Rut Fill	M_Maintenance Rut Fill	

Pavement Management Triggers

Cracking

- Indices in mid-fair to mid-good categories
 - Crack Seals < 6 years of age
 - o Chip Seals 6 − 12 years

Rut and Ride

- Overlays are almost always triggered by ride > 112 inches/mile.
- ➤ Rut treatments trigger at 0.3 inches
 - o Mill/fill
 - Overlay
 - Microsurfacing

Pavement Management System

Pavement Management Equipment

Construction Program

Calendar Year	Contractor Payments	Plant Mix Surfacing
2010	\$334,009,878	\$83,917,612
2011	\$338,623,170	\$93,563,808
2012	\$356,343,432	\$99,263,792
2013	\$310,347,332	\$77,751,986
2014	\$332,461,074	<u>\$82,156,778</u>
Average	\$334,356,977	\$87,330,796

Maintenance Program

> Limited Budget

- o \$1,000,000/District
- o \$7,000,000 Statewide
- > Reactive Maintenance.
- Aggressive crack sealing program.
- > Efforts coordinated with the construction program.
- Provide critical input to determine appropriate treatments.

Pavement Preservation Tools – Crack Sealing

Pavement Preservation Tools – Crack Sealing

- MDT's crack sealing program has steadily increased over the past 20 years.
- Work is done as needed and as money allows.
- > Performed ahead of chip seals on existing pavements.
- Primarily contracted work.

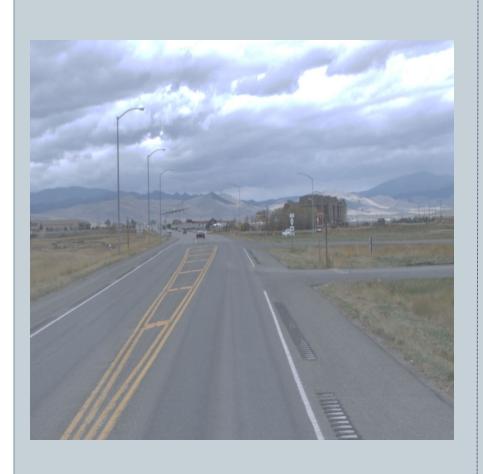
Pavement Preservation Tools – Chip Seals

- Initially placed under the same contract as the paving.
- > Expect 6-8 years service life.
- Contractor's are required to warranty work through the first Wednesday in December of the year it is placed.

MDT Chip Seal History

- Started chipping all pavements around 1990.
- OGFC moratorium and Grade B Mixes
- Grade D Mixes 1994
- > Superpave by 2003

Chip Sealing New Pavements


Benefits

- Seals porous pavements
- Increased surface friction.
- Protects pavement from oxidation.
- Reduced water spray

> Issues

- Windshield damage
- Premature failures
- Benefit/Cost?

Pavement Preservation Tools – Overlays

- > MDT's standard is ½" or 3⁄4" mixes paved 0.15 ft 0.20 ft deep.
- Chip Seals are applied under the same contract.
- Recently began paving using 3/8" mixes without chip seals.
 - Primary use is for urban areas.
 - Premature chip seal wear.

Pavement Preservation Tools – Microsurfacing

Pavement Preservation Tools - Microsurfacing

- MDT's first projects were constructed in 2011.
- Cost effective solution for relatively minor rutting.
- The main issue to date has been unrealistic expectations.

Pavement Preservation Tools — Cold-In-Place Recycling

> Overview

- Montana has been using since the early 1990's.
- Experience with both chip sealing and overlaying CIPR.

> Benefits

- Reduced Cost
- Reuse of existing Material
- Minimized loading of reduced pavement section
- No affect on pavement width

Pavement Preservation Tools — Cold-In-Place Recycling

Issues

- No local contractors, limited cost savings.
- Limited ride improvement.
- Weather limitations.
 - Surface must be covered prior to winter.
 - Temperature limits.

Pavement Preservation Tools – Others

- > Slurry seals
- > Hot-In-Place Recycling
- > Scrub Seals

> Cold Central Plant Recycling

Challenges

> FUNDING!!!

- Highway Bill
- Other needs
 - Capital Improvements
 - Safety
 - Bicyclists

> Staffing

- Succession planning
- Complacency
- Training/education

Industry Suggestions

- Standardize technologies.
- Continue education on the proper use of each technology.
- > Quantify the benefits.
- > Ensure the quality of the product being delivered.

Montana's Approach to Pavement Preservation

QUESTIONS?