

MnROAD Benefits

Safer, Smarter, Sustainable Pavements through Innovative Research

Ben Worel 2015 NEPPP Meeting April 30, 2015

We all have a stake in $A \oplus B$

Presentation Outline

Investment into Pavement Research

- Current State of our Roadways (roads in poor condition)
- Research is needed to come up with the answers
 - No new source of funding expected
 - Cannot continue to do the same things that got us here
- Minnesota Trunk Highway System
 - 11,963 miles (19,248 km) Hot Mix Asphalt
 - + 2,259 miles (3683 km) Portland Cement Concrete
 - + 9 miles (14 km) Untreated Gravel

= Total: 14,321 miles (23,042 km)

• Total Roads in MN: 142,913 miles (229,996 km)

Investment into Pavement Research

Investment into Pavement Research

Materials and Road Research

A long-term accelerated pavement testing facility that gives researchers a unique, reallife laboratory to study and evaluate the performance of materials used in roadway construction.

(

3

50

MinROAD Materials and Road Reso

Materials and Road Research

MnROAD "Mainline", Westbound Interstate-94 Live Public Traffic

W.B. I-94 Traffic Diverted (3 days / month) ~800,000 ESALS/Yr

•

Materials and Road Research

MnROAD "Low Volume Road" Controlled Access MnROAD Fully Loaded Semi ~16,000 ESALS/Yr (loaded / unloaded Lane)

MnROAD

Major Experiments

- Phase I (1994-2006)
- Phase II (2007-2016)
- Future Phase III (2016 2026)

Layout and Designs

- Mainline / Low Volume
- Asphalt / Concrete / Aggregate
- 3,5,10 Year Designs
- Accelerated Findings
- Low Impact / Risk to the public

MnROAD Operations

- Staffing ~20 Road Research (7 FTE MnROAD)
- Research Development
- Construction

Performance Monitoring

- Cracking / Rutting / Ride
- Deflection (FWD),

• Sensors

- Static (Environmental)
- Dynamic (Traffic Loading)
- MnROAD Database
- Technology Transfer
- Traffic Loadings

MnROAD Air Temperatures

MnROAD Weather Station (AIR Temperature Statics)

MnROAD - Cell 23

2001 Thermal Couple Calculated Frost

MnROAD – Cell 23

Thermal Couple Calculated Frost

MnROAD Benefits

• Direct

- Savings of materials
- Sustainable

Indirect

- Time savings and quality
- Avoidance
 - Don't do that on the system
- Demonstration
 - Confidence to try something new

MnROAD Phase-I (1994-2006) Benefits

Saves \$33 million Annually (Savings from 2006-2018)

- Seasonal Load Limits
 - Spring Restrictions / Winter Overloads
- Improved Design Methods
 - Flexible & Rigid Updated Designs
 - Environment Drives Pavement Performance
 - Current Designs are too Conservative
- Sealing Pavement / Shoulder Joints

MnROAD Phase-II (2007-2016) Concrete Benefits

Concrete Materials

- Improved Concrete Overlay Design
- Use of Recycled Materials in PCC
- Use of Fibers
- Concrete Repairs

Savings – Whitetopping

\$1.9 Million / year (thinner designs utilized)

MnROAD Phase-II (2007-2016) Asphalt Benefits

- Asphalt Materials
 - Use of Warm Mix
 - Better understanding on modification
 - Developing a performance test for LTC
 - Use of Recycled materials

• Savings – Low Temperature Cracking

- 2.3 million / year

(Reduced cracking / less maintenance / better performance)

Low Temperature Cracking

• TPF-5(132) Pooled Fund

- National mix test and specification
- HMA cells and other state roadways

Observations

- Fracture Energy we are able to measure
- Changes noticed for
 - Aggregate Type
 - Aggregate Gradation Size
 - Binder Grade
 - Binder Modification
 - Air Voids
 - Use of Recycle

• Benefits

- Fracture energy key to thermal cracking but other cracking?
- Give engineers more insight in the materials they select

MnROAD Phase-II (2007-2016) Unbound Benefits

- Unbound Materials
 - Importance of drainage / Performance
- Savings Stabile and Drainable
 - \$4.7 million

(Reduced deterioration of HMA cracks and PCC joints - maintenance)

Savings – Recycled Unbound Materials

– \$ 0.8 million

(More sustainable material selection vs virgin materials)

Savings - Stabilization using High Carbon Fly Ash

– \$ 0.1 Million

(Insurance for construction delays)

• Savings – Full Depth Reclamation

- \$ 0.5 million

(Proven design and life extending benefits)

Full Depth Reclamation

- Road Science Partnership
 - 3 Cells (mainline)
 - 1 Cell (LVR)
- Observations

- 2.75" Interstate surface on engineered FDR
- Engineered emulsion provides a balance stiffness and flexibility.
- Benefits
 - Design method for HMA Full depth repairs
 - Design method for distressed pavements
 - Sustainable practice

MnROAD Phase-II (2007-2016) Pavement Preservation Benefits

Pavement Preservation

- High Volume Chip seals
 - <u>https://www.youtube.com/watch?v=OI5R7n8zGoc</u>
- Better understanding of the asphalt aging
- Flexible Microsurfacing

MnROAD Phase-II (2007-2016) Pavement Preservation Benefits

Savings – Diamond Grinding

– \$ 3.5 million

(Bernard's economic analysis savings of ~100,000 mile for amount of future noise walls and height based on OBSI) (assumes 7 jobs @ 5 miles job from past years MnDOT data)

National Research Initiatives

National Pavement Preservation Study Development of a National Cracking Test

National Pavement Preservation Study Northern Efforts

• Currently 6+ Northern States

- Similar treatments (North) / (South)
 - MnDOT Specs / Emulsions + Similar Sections
 - Thin Overlays and Surface Treatment
- Low Volume Roadway (157th Street)
- High Volume Roadway (US-10)

- NCAT Contracted "Surface Treatments"
- MnDOT Contracted "Thin Overlays"
- Construction 2015 or 2016

National HMA Cracking Performance Test Northern Efforts

Goals

- We need tests and criteria that relate to performance.
- We need tests that are practical for both mix design verification and quality control testing purposes.
- We need tests that accommodate recycled materials, new and future additives, and combinations.

National HMA Cracking Performance Test Northern Efforts

- Southern States \rightarrow Top Down Focus
- Northern States → Low Temp / Reflective Cracking
 - Select ~8 mix designs
 - L-M-H Fracture Energy, Range of Binder Replacement
 - Innovative Mixes,
 - MnROAD Cell Availability
 - New Construction (8 new cells)
 - Rehab of HMA (2 cells + 3 miles old EB I-94)
 - Rebab of PCC (3 Cells ML + 1 Cell LVR + 2 miles old WB I-94)
 - May tie to TERRA to join in a complete effort

MnROAD Past Investment

- 9 Year Average Funding = \$2.75 million
- Funded by
- National Facility
 - Increase outside funds
 - Increase outside use

Industry - \$36,500 Other State SPR - \$282,000 FHWA - \$307,000

MnDOT SPR \$551,000

Local Road Research Board \$558,000

MnDOT Operating Funds \$1,010,000

National MnROAD and NCAT Efforts

(looking for your participation)

• NCAT Pooled Fund

- Alabama DOT Lead
- MnROAD Partnership Focus on
 - Pavement Preservation @ 120K/yr
 - National HMA Cracking Performance Test @ 210K/yr
- <u>http://www.pooledfund.org/Details/Study/496</u>

National Pooled Fund

Partnering for Roadway Innovation

TERRA Pooled Fund

- Minnesota DOT Lead with MnROAD Test Facility
- TERRA and past MnROAD pooled fund states
- Expected to be 150K/yr
- Focus on
 - 2014 Peer Exchange Research Needs
 - Research Other important needs
 - Pavement Preservation Efforts (Starting Year-4)

Legislative Funding also being pursued

Discussion

We all have a stake in $A \oplus B$

