Slurry Seal and Micro Surfacing Systems

Definition of an emulsion

An emulsion is a homogeneous mixture of two immiscible liquids.

- Immiscible liquids:
 - Liquids that normally don't mix
 - Oil (or, in our case, asphalt) and water
- Homogeneous:
 - Mixture must have the same composition, throughout
 - No layering

Example: Salad dressing

Not an emulsion

Unstable emulsion

Roles of the emulsifier

- Imparts stability
 - Prevents layers from forming
- Imparts charge
 - Cationic vs. Anionic (Positive vs. Negative)
- Imparts mixing and curing characteristics
 Slow Set vs. Quick Set

Tail group: Hydrocarbon, oil loving (or lipophilic)

Emulsion production

Polymer in micro emulsions: Latex

Add latex external to asphalt

- Methods
 - Add to soap batch
 - Co-milling soap line
 - Co-milling asphalt line
- Polymers SBR, natural latex
- Lower asphalt process temp.
- No special mill, handling
- Polymer in water phase

- Ο 0 Ο \bigcirc \bigcirc Ο 0 \bigcirc 0 \bigcirc Ο \cap \bigcirc 0 \bigcirc
- Continuous polymer film formation on curing

Polymer in micro emulsions: SBS

- Add SBS to the asphalt before milling (produce the emulsion with PMA base)
 - Polymers SBS
 - PMA production requires special mill for production
 - PMA requires high process temperature
 - Emulsion plant needs a heat exchanger

Polymer in asphalt phase

- Stiffer residue may lead to slower film formation/curing
- Softer starting base may mitigate that issue

Benefits of adding latex

- SBR latex polymer
 - Mixture
 - Tougher surface
 - More resistant to abrasion
 - Improved adhesion and water resistance
 - Data
 - One-hour soak
 - 50% reduction in loss
 - Six-day soak
 - 67% reduction in loss

Aggregate charge

Increasing mix time

Increase emulsifier dosage in the emulsion

Residue – Latex modified vs. polymer modified

Dried emulsion residues (coalesced asphalt particles)

Neat asphalt

Latex modified emulsion

Emulsion of polymer modified asphalt

Asphalt rheology only

Improved binder properties

- Improved low temperature fatigue properties
- Reduced rutting at high temperature
- Improved early strength development

Latex morphology

Texas State Highway 84

Near Waco,TX

- Paved in 1998
- Samples taken in 2001

Mineral filler chemistry

Two Competing Reactions $CaCO_3 + 2HCI \longrightarrow CaCl_2 + CO_2 + H_2O$ Cement (or lime) reacts with acidic emulsion $CaCl_2$ is formed – Calcium ions stabilize the system More stable system mixes longer

The Other Reaction = Chemical Break

Cement (or lime) has high pH - When combined with acidic emulsion having a low pH - System is destabilized Destabilized systems break

Factors that affect curing

- Water content
 - More in → More out → Longer cure time
- Mix time
 - More stable emulsion
 More mix time
 Longer cure time
- Emulsion pH
- Particle size of the emulsion

Emulsion pH and curing

Siliceous aggregates: Lower emulsion pH ➡ Faster cure rate

Emulsion pH and curing

Calcareous aggregate systems
 Positively charged aggregates

 Limestone, dolomite
 Emulsion pH → Faster cure rates

$CaCO_3 + 2HCI \longrightarrow CaCI_2 + CO_2 + H_2O$

Limestone reacts with acidic emulsion

CaCl₂ is formed – Calcium ions stabilize the system Reducing the acid, reduces the stabilizing effect – Speeds the cure rate

Emulsion particle size and curing

- Smaller particle size emulsions
 Faster cure time
- Target particle sizes
 Average ~ 4-6 microns
 90% less than 7-8 microns
- Tight particle size distribution
 Narrow bell-shaped curve

Particle size distributions

Micro surfacing testing summary

Test	ISSA TB No.	Specification
Mix Time @ 77°F, seconds	113	120 minimum
Wet Cohesion, kg-cm @ 30 minutes (Set) @ 60 minutes (Traffic)	139	12 minimum 20 minimum or Near Spin
Wet Stripping, %	114	Pass (90% minimum)
Wet-Track Abrasion Loss, g/ft ² One-hour soak Six-day soak	100	50 maximum 75 maximum
Lateral Displacement, % Specific gravity after 1,000 Cycles of 125 lb.	147	5 maximum 2.10 maximum
Excess Asphalt by LWT Sand Adhesion, g/ft ²	109	50 maximum
Classification Compatibility, Grade Points	144	11 minimum

Application equipment

Mix time test – ISSA TB 113

Purpose

To measure the amount of time a specific combination of materials will mix before breaking

Importance

Sufficient mix time will ensure the contractor has the time needed to apply the mixture and complete hand work before the mix breaks.

Cohesion test – ISSA TB 139

Purpose

To determine initial set and cure development of slurry surfacing systems as a function of torque over time

Importance

This test will give the buyer agency an idea of when traffic may be returned to the pavement under given curing conditions.

Wet track abrasion test ISSA TB 100

Purpose

To measure the wearing qualities of slurry surfacing systems under wet abrasion conditions

Importance

This test is used to determine the minimum residual binder content needed to hold the system together.

Lateral displacement & Sand adhesion - ISSA TB 147 & 109

Purpose

To measure the rut resistance and/or flushing potential of slurry surfacing systems under simulated rolling traffic

Importance

This test is used to determine the maximum residual binder content a slurry surfacing system can support without rutting and/or bleeding.

Thank you!

Contact Information

Debbi Deep Technical Services Manager

MWV Specialty Chemicals 5255 Virginia Avenue North Charleston, SC 29406

Office: (843) 746-8159 deborah.deep@mwv.com