DeIDOT Bridge Management Program

Jason Arndt, P.E.
DeIDOT Bridge Management Engineer
Agenda

1. Background

2. Current State of Bridge Inventory

3. Key Issues Affecting Our Bridge Inventory

4. Bridge Asset Management
 - A. Deficiency Formula Prioritization Process
 - B. Bridge Preservation Mechanisms
 - C. Performance Measures
 - D. Effectiveness of Bridge Program
Maintain approximately 13,268 lane miles

~90% of all roads and 98% of bridges are State-owned

Bridge Structural Deficiency Percentage is in the top 5 in the nation among states

Manage 1,626 state-owned bridges

Inspect, maintain and manage:
- 37 dams
- 500 overhead sign structures
- 150 high mast lighting structures
- one parking garage
Bridge Management Section Core Functions

- Inspect Bridge, Dam, Cantilevered Traffic Signals, High Mast Lighting and Overhead Sign Structures
- Maintain Bridge, Cantilevered Traffic Signals, High Mast Lighting and Overhead Sign Structure Databases
- Maintain Bridge Load Ratings
- Process Overweight Vehicle Permits
- Maintain Pontis Bridge Preservation/Deterioration Models
- Prioritize Bridge Preservation Needs
- Respond to High Priority Reports
As of 1/1/15, we have 1,626 bridges in our inventory.
DeIDOT Bridge Management Program

Current State of Bridge Inventory

Condition of Bridge Inventory

Total of 1626 Bridges
2014 Bridge Performance

6.8% of Bridge Inventory is Structurally Deficient (SD)

25.6% of Bridge Inventory is Fair & Structurally Deficient (74.4% Good)
Key Issues Affecting Our Bridge Inventory

1. Corrugated Metal Pipes (CMP’s)
2. R/C Decks
3. Scour
4. Paint of Steel Bridges
5. Substructure Deterioration (Joints)
Key Issues Affecting Our Bridge Inventory

SD Breakdown of Key Issues

- CMP's: 80
- R/C Deck Issues: 9
- Scour: 7
- Paint of Steel Bridges: 7
- Substructure Deterioration: 5
- Misc.: 2
Key Issues Affecting Our Bridge Inventory

1. Corrugated Metal Pipes (CMP’s):

CMP Bridges account for ~14.5% of our inventory, but they account for ~72.3% of the number of Structurally Deficient bridges in our inventory.
Key Issues Affecting Our Bridge Inventory

1. Corrugated Metal Pipes (CMP’s):

Factors Affecting Past, Current & Future Condition of Our CMP Inventory

A. Dropped Bridges
 - Roughly 160 CMP Bridges Removed from Inventory in 80’s & 90’s

B. Found Bridges
 - 24 CMP Bridges Found in 2014 / 16 are SD
 - 12 CMP Bridges Found in 2015 / 8 are SD

C. Expected Design Life vs. Average Age of CMP Inventory
Key Issues Affecting Our Bridge Inventory

1. Corrugated Metal Pipes (CMP’s):
Factors Affecting Past, Current & Future Condition of Our CMP Inventory

![Bar chart showing expected design life and average age of inventory for different materials: Concrete, Steel CMP, HDPE, Aluminum CMP.](chart.png)
Key Issues Affecting Our Bridge Inventory

SD Breakdown of Key Issues

- CMP's: 80
- R/C Deck Issues: 9
- Scour: 7
- Paint of Steel Bridges: 7
- Substructure Deterioration: 5
- Misc.: 2
Key Issues Affecting Our Bridge Inventory

2. R/C Decks:

Factors Affecting Current & Future Condition of Our R/C Deck Inventory

A. Harsh Winters
 - Freeze/Thaw Cycles
 - Use of Deicing Agents
 - Snow Plow Damage

B. Inspection Limitations
 - Traffic Volume
 - Nighttime Vs. Daytime Lane Closures
 - Sound

C. Interstate Deck Bubble
 - Ten Year Outlook

D. Past Project Decisions
 - Repair Methods & Decisions
 - Material Selection
Deficiency Formula Prioritization Process

1. Bridge Inspections
 - Element Level Breakdown of Bridge
 - Condition State Assignment for Each Element
DelDOT Bridge Management Program
Bridge Inspections

Sample Bridge Element Data - Bridge 1-229B

<table>
<thead>
<tr>
<th>Elements</th>
<th>ID</th>
<th>ENV</th>
<th>UNITS</th>
<th>TOTAL</th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>CS4</th>
<th>CS5</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Deck - Base</td>
<td>12</td>
<td>2</td>
<td>SF</td>
<td>35670</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Concrete Deck - Protected w/ Coated Bars</td>
<td>26</td>
<td>1</td>
<td>SF</td>
<td>860</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Reinforced Concrete Sidewalk</td>
<td>56</td>
<td>2</td>
<td>LF</td>
<td>1082</td>
<td>989</td>
<td>57</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Delineators/Drainpipes/Scuppers</td>
<td>68</td>
<td>2</td>
<td>EA</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Painted Steel Open Girder/Beam</td>
<td>197</td>
<td>2</td>
<td>LF</td>
<td>4720</td>
<td>0550</td>
<td>467</td>
<td>201</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Painted Steel Pin and/or Pin and Wanger Assembly</td>
<td>141</td>
<td>2</td>
<td>EA</td>
<td>40</td>
<td>0</td>
<td>16</td>
<td>22</td>
<td>21</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Reinforced Concrete Column of Pile</td>
<td>208</td>
<td>2</td>
<td>LF</td>
<td>114</td>
<td>115</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Reinforced Concrete Abutment</td>
<td>218</td>
<td>2</td>
<td>LF</td>
<td>150</td>
<td>24</td>
<td>68</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Reinforced Concrete Flex Cap</td>
<td>294</td>
<td>2</td>
<td>LF</td>
<td>940</td>
<td>929</td>
<td>9</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Strip Seal Expansion Joint</td>
<td>300</td>
<td>2</td>
<td>LF</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Compression Joint Seal</td>
<td>302</td>
<td>2</td>
<td>LF</td>
<td>140</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Open Expansion Joint</td>
<td>306</td>
<td>2</td>
<td>LF</td>
<td>77</td>
<td>98</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Elastomeric Bearing</td>
<td>310</td>
<td>2</td>
<td>EA</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Fixed Bearing</td>
<td>315</td>
<td>2</td>
<td>EA</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Reinforced Concrete Approach Slab w/ or w/o AC Only</td>
<td>301</td>
<td>2</td>
<td>EA</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Bridge Railings - Metal Decked</td>
<td>330</td>
<td>2</td>
<td>LF</td>
<td>1180</td>
<td>1182</td>
<td>10</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Bridge Railings - Reinforced Concrete</td>
<td>341</td>
<td>2</td>
<td>LF</td>
<td>800</td>
<td>589</td>
<td>157</td>
<td>0</td>
<td>412</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Bridge Railings - Metal Coated</td>
<td>344</td>
<td>2</td>
<td>LF</td>
<td>569</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>412</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Steel Fatigue</td>
<td>356</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Deck Deterioration</td>
<td>357</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Deck Cracking</td>
<td>358</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Soffit (or Under Surface) of Concrete Deck or Slab</td>
<td>359</td>
<td>2</td>
<td>EA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Soot</td>
<td>361</td>
<td>1</td>
<td>EA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Section Loss</td>
<td>363</td>
<td>1</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Erosion</td>
<td>364</td>
<td>1</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Painted Steel Diaphragm</td>
<td>365</td>
<td>1</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
<tr>
<td>Reinforced Concrete Wingwalls</td>
<td>366</td>
<td>2</td>
<td>LF</td>
<td>72</td>
<td>71</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>For Notes See MSPE Report</td>
</tr>
</tbody>
</table>

Total Elements: 27
Deficiency Formula Prioritization Process

2. Preservation Actions (Work) & Costs
 - Preservation & Deterioration Models
 - Lowest Long-Term Cost
 - Applied to Each Condition State for Each Element

3. Recommended Work & Associated Cost
 - Cost for recommended work is calculated for each bridge
 - Deficiency List $1,500 Threshold
Deficiency Formula Prioritization Process

4. Deficiency Formula
 - Calculated for each bridge on Deficiency List
 - Bridges ranked by Deficiency Points

5. Deficiency Formula Factors
 - Conditional Deficiencies (50%)
 - Functional Importance (50%)
Deficiency Formula Prioritization Process

- Hist Sign/FC: 10%
- Func Obsolete: 0%
- Truck AADT: 10%
- AADT: 0%
- Detour Length: 10%
- Functional Class: 10%
- Load Capacity: 10%
- Sour Critical: 5%
- Structurally Deficient: 15%
- Benefit-Cost Ratio: 5%
- Health Index: 25%
DelDOT Bridge Management Program

Delaware Department of Transportation

Delaware Deficiency Points - 2016 Del Formula

<table>
<thead>
<tr>
<th>#</th>
<th>Bridge #</th>
<th>Dist</th>
<th>Descript</th>
<th>Des-City</th>
<th>NBI</th>
<th>Length</th>
<th>Gage</th>
<th>Suffix</th>
<th>Benefit</th>
<th>Cost</th>
<th>Health</th>
<th>PGI</th>
<th>Scour</th>
<th>Critical</th>
<th>Flood</th>
<th>Debris</th>
<th>History</th>
<th>Yrs</th>
<th>Practic</th>
<th>Track</th>
<th>A/DT</th>
<th>Item</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240-1819</td>
<td>1.6</td>
<td>1/22/12</td>
<td>DelDOT Ditching</td>
<td>S</td>
<td>12.5</td>
<td>140066</td>
<td>145083</td>
<td>NA</td>
<td>11</td>
<td>1.96</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>267-195</td>
<td>3</td>
<td>1/22/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>35260</td>
<td>35260</td>
<td>NA</td>
<td>11</td>
<td>0.99</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>267-197</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>61650</td>
<td>61650</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>267-199</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>110000</td>
<td>110000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>267-201</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>150000</td>
<td>150000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>267-203</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>180000</td>
<td>180000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>267-205</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>180000</td>
<td>180000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>267-207</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>180000</td>
<td>180000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>267-209</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>180000</td>
<td>180000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>267-211</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>180000</td>
<td>180000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>267-213</td>
<td>3</td>
<td>1/27/12</td>
<td>Beam Steel Bridge</td>
<td>S</td>
<td>12.5</td>
<td>180000</td>
<td>180000</td>
<td>NA</td>
<td>11</td>
<td>1.31</td>
<td>NA</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>6</td>
<td>33</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **DF:** Deficiency Factor
- **Bridge #:** Bridge Identification Number
- **Dist:** Distance from Beginning of Bridge
- **Descript:** Description of Bridge
- **Des-City:** Description of City
- **NBI:** National Bridge Inventory Number
- **Length:** Length of Bridge
- **Gage:** Number of Gages
- **Suffix:** Suffix of the Bridge
- **Benefit:** Benefit of the Bridge
- **Cost:** Cost of the Bridge
- **Health:** Health Rating of the Bridge
- **PGI:** Performance Grade Index
- **Scour:** Scour Vulnerability Index
- **Critical:** Critical Vulnerability Index
- **Flood:** Flood Vulnerability Index
- **Debris:** Debris Vulnerability Index
- **History:** History of the Bridge
- **Yrs:** Years Since Last Inspection
- **Practic:** Practic Rating of the Bridge
- **Track:** Track Rating of the Bridge
- **A/DT:** ADT Rating of the Bridge
- **Item:** Item Rating of the Bridge
- **DF:** Deficiency Factor

Notes:
- The table above outlines the deficiencies and ratings for various bridges in Delaware, providing critical information for maintenance and prioritization.
- Each bridge is rated on various factors such as NBI, Length, Gage, Suffix, Benefit, Cost, Health, PGI, Scour, Critical, Flood, Debris, History, Years Since Last Inspection, Practic, Track, A/DT, Item, and DF.
- The DF column indicates the level of deficiency, with higher numbers indicating higher deficiencies.
- This data is crucial for bridge management planning and prioritization efforts.
Bridge Preservation Mechanisms

1. In-House Maintenance
 A. CMP Culvert Replacements
 B. Minor Concrete Repairs
 C. Minor scour or erosion repairs

2. Structure Maintenance Contracts (SMC’s)
 A. Deck Patching
 B. Joint repair/replacement
 C. Minor Bridge Rehab Work
 D. Emergency Bridge Repair Work

3. Bridge Design
 A. Major Bridge Rehab Work
 B. Bridge Replacement
DelDOT Bridge Performance Goals

<5% of Bridge Inventory is Structurally Deficient (SD)

<25% of Bridge Inventory is Fair & Structurally Deficient (>75% Good)
Effectiveness of Bridge Program

2014 Bridge Performance

- 6.8% of Bridge Inventory is Structurally Deficient (SD)
- 25.6% of Bridge Inventory is Fair & Structurally Deficient (74.4% Good)

DelDOT Bridge Performance Standards

- <5% of Bridge Inventory is Structurally Deficient (SD)
- <25% of Bridge Inventory is Fair & Structurally Deficient (>75% Good)
Effectiveness of Bridge Program

Improving the Bridge Program

Need to address bridges in Fair Condition sooner and more efficiently before they become SD

Possible Options:

A. Modifications to the prioritization process
B. More emphasis on Preventative Bridge Maintenance
C. Addressing CMP’s Quicker
D. Corridor/Zone bridge rehab projects
E. Review of other DOT’s Processes
F. Review of Inspection Procedures
Conclusion:

Need a defined Bridge Management process
- Systematic process w/ results that are reproducible
- Allow for some flexibility
- Funds are limited - A successful Bridge Management process will aid in justifying and maximizing bridge funding
- Using a defined process allows for less political intervention and scrutiny
- Need performance measures to track progress and evaluate the effectiveness of the Bridge Management Program
- Periodically review & evaluate effectiveness of the prioritization process
Questions?

Contact Info:
Jason Arndt, P.E.
Bridge Management Engineer
Delaware Department of Transportation
(302) 760-2309
Jason.Arndt@state.de.us