Cold Central Plant Recycling (CCPR) China Experience

2014 International and Western States Recycling Conference

Denver - August 7th, 2014

Stephane Charmot, PhD, PE

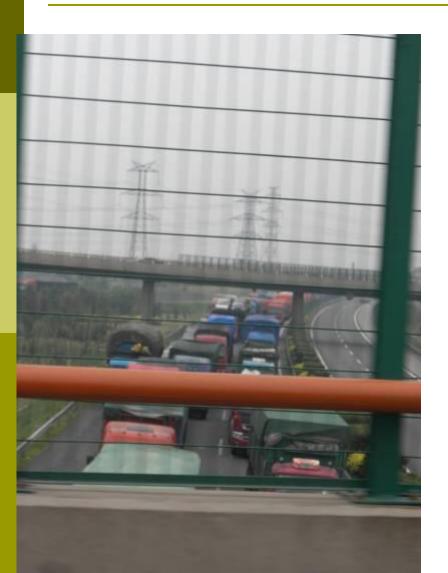
Meadwestvaco



Outline

- Background
 - China roadway network
 - Loading and structural needs
- Cold Recycling specification overview
- Project examples
 - Pavement section
 - Construction
 - Performance
- Summary

Roadway networks



- Chinese express way 104,500 km (65,300 mi)
- World's largest expressway system by length)
- 34 provincial-level administrative units

- 50 States
- 3,077 U.S. counties
- 4,374,563 km of paved roads
- 2,118,792 km of unpaved public roads
- 75,440 km of Interstates

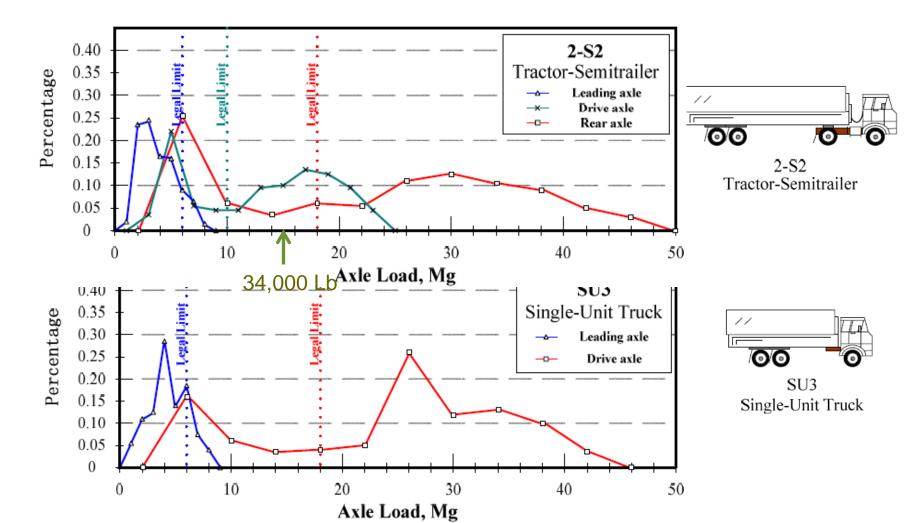
China Traffic Considerations

Peak load traffic is typically at night

Tianjin Expressway

China Loading

there there is a second of the second of the


 Pictures of traffic on Cold Recycling section constructed in August 2011 in Tangshan

24/7 trucks that supply iron plant

China Heavy Traffic Loading Considerations

About 50% or more of axles are overloaded

China Typical Pavement Structure

Driven by heavy loading, pavement structure is typically semi-rigid

- Distresses in CTB will lead to major rehabilitation
- -> Opportunity for CCPR

Cold Recycling Specification - RAP

RAP Requirements

Material	Test items	Requirements
	Moisture content	Measured
	RAP gradation	Measured
RAP	Asphalt content	Measured
	Flakiness	Measured
	Sand Equivalent (%)	> 50
	Penetration	Measured
	Dynamic viscosity	Measured
Recovered Asphalt	Softening Point	Measured
	Ductility	Measured

Cold Recycling Specification – RAP Gradations

Sieve Size (mm)	Coarse	Medium	Fine A	Fine B
37.5	100			
26.5	80~100	100		
19	_	90~100	100	
13.2	60~80	_	90~100	100
9.5	_	60~80	60~80	90~100
4.75	25~60	35~65	45~75	60~80
2.36	15~45	20~50	25~55	35~65
0.3	3~20	3~21	6∼25	6∼25
0.075	1~7	2~8	2~9	2~10

Cold Recycling Specification – Emulsion Requirements

Properties			Requirements
Туре			Cationic (+)
Sieve (1.18mm)			≤0.1
Viscosity		ViscosityE _{25, %}	2~30
Viscosity		25℃ Vs, Sec	7~100
	Emulsion Residue, %		≥62
Dociduo	Solubility, %		≥97.5
Residue	Penetration, dmm (25°C)		45~150
		Ductility, cm (15°C)	≥40
Emulsion Settlement			Requirement
Time		1d, %	≤1
		5d, %	≤5

Property	Requirements	
Air Voids, %	7 ∼ 12	
40 °C Marshall stability (Ø152.4mm) (*), kN	≥13.5 (3,000 lb)	
40 °C immersion Marshall residual stability, %	≥75	
15 ° C Dry Indirect Tensile Strength, MPa	≥0.5	
15 °C dry and wet splitting strength ratio, %	≥75	
Freeze-thaw splitting strength ratio (TSR), %	≥70	
60 ° C for dynamic stability, passes/mm	≥1000	

Note: Marshall compaction of 15 cm tall specimen. Primary compaction at 25°C with 150 blows each side. Secondary compaction 70 blows each side after placing specimens in a 60°C oven for 48 hours

Property	Requirements
Air Voids, % Compactib	lity 7~12
40 °C Marshall stability (Ø152.4mm) (*), kN	≥13.5
15 ° C Dry Indirect Tensile Strength, MPa Stability/Stre	≥0.5 ngth
40 °C immersion Marshall residual stability, %	≥75
15 °C dry and wet splitting strength ratio, %	≥75
Freeze-thaw splitting strength ratio (TSR), %	≥70
60 ° C for dynamic stability, passes/mm	≥1000

Property	Requirements
Air Voids, %	7∼12
40 °C Marshall stability (Ø152.4mm) (*), kN	≥13.5
15 ° C Dry Indirect Tensile Strength, MPa	≥0.5
40 °C immersion Marshall residual stability, % Moisture Res	≥75 istance
, ·	<u> </u>
Moisture Res	istance

Property	Requirements
Air Voids, %	7~12
40 °C Marshall stability (Ø152.4mm) (*), kN	≥13.5
15 ° C Dry Indirect Tensile Strength, MPa	≥0.5
40 °C immersion Marshall residual stability, %	≥75
15 °C dry and wet splitting strength ratio, %	≥75
Freeze-thaw splitting strength ratio (TSR), %	≥70
60 ° C for dynamic stability, passes/mm	≥1000

Wheel tracking Test for Rutting Resistance

CCPR RAP Crushing and Screening

CCPR Stockpiles

Typical stockpiles

- 0-5 mm (0-#4)
- 5-10 mm (#4-3/8")

- 10-20 mm or 10-30 mm (3/8"-3/4" or 3/8"1.25")
- Coarse Virgin Aggregate as Needed

CCPR Mixing Pugmill Configurations

Single pugmills

Dual pugmills

Dual Pugmill

RAP and/or

Aggregate Bins

Conveyor to Secondary

Truck Loading

Area

Pugmill

Fil<u>ler Feeder</u>

Primary Pugmill
(Filler and Water Addition)

Secondary pugmill (Emulsion Addition)

CCPR Mixture Production

CCPR Portable Plant of Beijing Saint Ground Highway Technology Company(SGT)

CCPR Mixture Production (Cont.)

CCPR Mixture Production (Cont)

CCPR Mixture Production (Cont)

Paving Operation

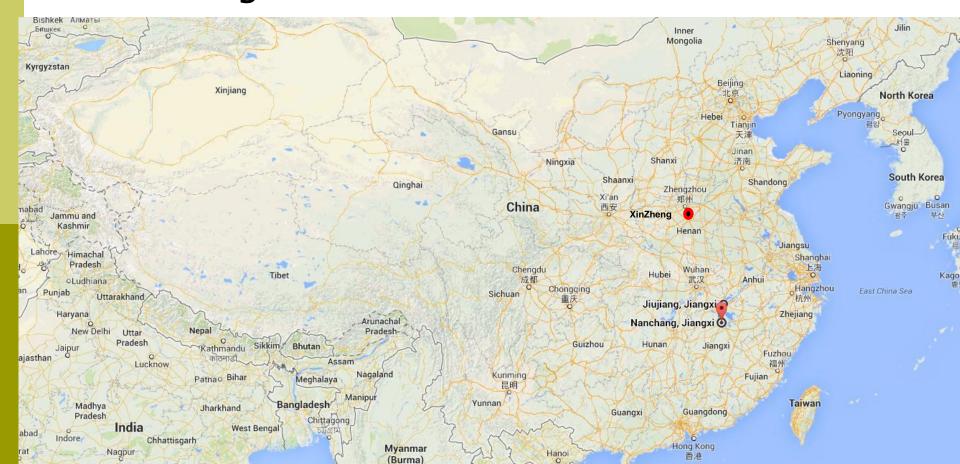
Compaction Operation

Heavy compaction equipment suitable: 2x18T Single Steel, 1x13T Double Steel, 2x30T Pneumatic Rollers

Quality Control

On site laboratory

Portable QC Laboratory of Beijing Saint Ground Highway Technology Company(SGT)

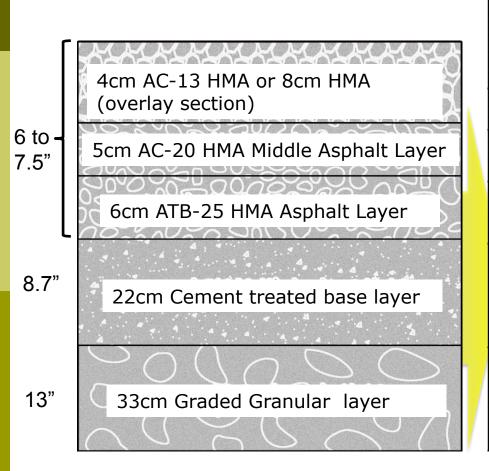


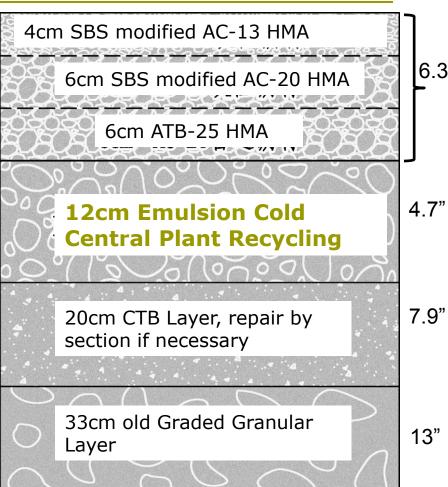
Project Examples

Nanchang to Jiuiang (ChangJiu) G70 – JiangxiXinzheng G107 - Henan

Project 1-Nanchang to Jiujiang (ChangJiu) Expressway – 2006/2007

G70 Before condition





108 km rehabilitation using Emulsion CCPR

Changjiu G70 Pavement Structure

Old Pavement Structure

New Pavement Structure

Project Construction

Project 1-Nanchang Jiangxi Jiujiang Expressway

Condition after 8 years

Satisfactory performance with minimal cracking

Project 2 - 2013 Henan G107 (Xinzheng City)

- Before condition
 - Rutting
 - Cracking

Henan G107 Pavement Structure

0-12 cm (4-5") Old Asphalt Concrete 20 cm (8") Cement Treated Base Sub-Base

01d Pavement Structure

New Pavement Structure

Henan G107 (Xinzheng City) Construction and Performance

Emulsion CCPR Upcoming Projects

2013-2015 Project list example from single contractor: Beijing Saint Ground Highway Technology Company(SGT)

No.	Project name	Province	Length(km)	RAP amount (Metric T)	Construction timeframe
1	Changzhang	Jiangxi	98	497,000	2014.6~2014.12
2	Changtai	Jiangxi	147	287,000	2014.8~2015.6
3	Taigan	Jiangxi	128	280,000	2013.9~2014.12
4	Changjin	Jiangxi	168	130,000	2013.9~2014.12
5	Liwen	Jiangxi	245	120,000	2014.8~2015.6
6	Wenhou	Jiangxi	35	100,000	2014.9~2015.6
7	Jingshi	Hebei	192	80,000	2014.5~2014.8

Total: 1,013 km Total: 1.5 Million Tons

(633 center lane mi)

Summary

- Emulsion CCPR is an effective rehabilitation technique that can be used on low to high volume traffic roadways
 - CCPR followed by HMA overlay in China (high traffic)
 - Satisfactory performance overall (especially reflective cracking resistance)
- CCPR system needs to be properly designed and constructed to meet specification and project requirements

Summary (Cont.)

- Construction steps important to final quality:
 - RAP stockpile preparation
 - Pugmill mixing (accurate proportioning)
 - Paving and rolling
 - Logistics
 - Quality Control
- CCPR is being implemented on a relatively large scale
 - More that 600 center miles of emulsion CCPR projects scheduled for the next two years in two provinces

Thank you – Questions?

stephane.charmot@mwv.com

2014 Interstate Project Near Shanghai (China)