Determining Service Life & Life Cycle Costs to Preserve Substructures

“Right Action at the Right Time”

by

Siva Venugopalan

Principal Engineer

Siva Corrosion Services, Inc.
Deterioration Mechanism

![Graph showing deterioration over time with various mechanisms including combined, corrosion, sulfate attack, DEF, and ASR.](image)

- Combined
- Corrosion
- Sulfate Attack
- DEF
- ASR
Service Life Performance

Cost of Maintenance

Condition of Structure

- Good: Preserve
- Fair: Extend Life
- Poor: Replace

First Visible Damage
Internal Damage
Use NDT
Damage Accelerates

Potential Failure

Critical Point

Reinforced concrete: address here
PS/PT: address here
Use NDT
Service Life

• Project future deterioration
• Combine existing condition with future deterioration for better asset management
• Evaluate effectiveness of various corrosion mitigation options
• Design concrete mix for new construction
• Adopt better preservation methodology
Projecting Future Deterioration

Future Deterioration depends on:

• the quality of the concrete (how effective it is in slowing down the chloride penetration)
• the depth of cover (how far the chlorides must travel to reach the rebars)
• Concentration of chlorides at the concrete surface and through the depth of cover
• the existing concrete damage (model future damage based on existing damage)
Service Life Software

- Applicable to new and existing structures
- Allows impact analysis of corrosion mitigation solutions such as:
 - Eliminating/reconstructing Joints
 - Sealers
 - Membranes
 - Thin and Rigid overlays
 - Coatings
 - High Performance Concrete and reinforcements
 - Corrosion Mitigation (GCP, ICCP, ECE)
Service Life – Case Study

Projected Damage of Repair Options
- Pier Caps

- 25% Damage Eligible for Replacement
- Total Damage - No Repairs
- Visual Damage - No Repairs

Year
- 1970
- 1980
- 1990
- 2000
- 2010
- 2020
- 2030
- 2040
- 2050
- 2060

Concrete Damage, % Area
- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35

- Initial Cost Option - Patch Only - Total Damage
- Initial Cost Option - Patch Only - Visual Damage
- LCC Option - ECE - Total Damage
- LCC Option - ECE - Visual Damage
- No Repairs - Total Damage
- No Repairs - Visual Damage

Patch only
- ECE
Case Study#1
King Street Deck- Alexandria, VA
Data required to determine the condition of the Deck & Substructure and to calculate the remaining life:

- Delam/Spall Survey
- Cover Survey
- Chloride Analysis
- Carbonation
- Service Life
King Street – Pier Concrete Damage
King Street – Quality of the Concrete

- Existing concrete damage is 24.4% for pier caps and 2.55% for pier columns
- Minimum concrete cover for 90% of the structure is 0.99 inches
- Carbonation is not a controlling factor for pier deterioration.
- ASR gel is present, but the petrographic report indicates that ASR is not expected to be an issue in the future
Service Life – Projected Concrete Damage

Projected Cumulative Concrete Damage of Pier Caps, %

- 24% at 42.5 years of age
- 25% damage at 45 years of age

Replace at 25% damage
King Street – Repair Options Considered

Piers caps

1. Patch repair
2. Patch repair with sprayed GCP
3. Patch and install ICCP.

Pier columns

1. Patch repair and breathable surface sealer
2. Patch repair with discreet anode
3. Patch repair, ECE, and sealer.
Unit Cost Table for Life Cycle Analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit rate, $</th>
<th>Unit</th>
<th>Life, Years</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B Deck Patch</td>
<td>300</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Type C Deck Patch</td>
<td>400</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Substructure Repair</td>
<td>1200</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Type A milling</td>
<td>18</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hydro Demolition (3.5” deep)</td>
<td>62</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Asphalt Overlay Removal</td>
<td>15</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Air/Grit Blasting</td>
<td>3</td>
<td>SY</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Low Permeability Concrete (5.5” thick)</td>
<td>120</td>
<td>SY</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>LMC Overlay placement</td>
<td>100</td>
<td>SY</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sealer</td>
<td>9</td>
<td>SY</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>GCP Sprayed</td>
<td>23</td>
<td>sq. ft.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>GCP Discreet Anode</td>
<td>17</td>
<td>sq. ft.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ECE</td>
<td>42</td>
<td>sq. ft.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>ICCP, Deck</td>
<td>12</td>
<td>sq. ft.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>ICCP, Substructure</td>
<td>40</td>
<td>sq. ft.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>MOT 1000 day</td>
<td>-</td>
<td>-</td>
<td>Less than 45 MPH</td>
<td></td>
</tr>
<tr>
<td>MOT 1500 day</td>
<td>-</td>
<td>-</td>
<td>More than 45 MPH</td>
<td></td>
</tr>
<tr>
<td>Deck Replacement</td>
<td>60</td>
<td>sq. ft.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>User Cost</td>
<td></td>
<td></td>
<td>Not Included</td>
<td></td>
</tr>
</tbody>
</table>
King Street Recommended Repair Options and Life Cycle Cost

<table>
<thead>
<tr>
<th>Bridge Element</th>
<th>Description</th>
<th>Initial Cost</th>
<th>Additional Life Cost (50 yr)</th>
<th>MOT Associated w/LCC only</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair/Rehabilitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier Cap</td>
<td>Patch + ICCP</td>
<td>$ 435,200</td>
<td>$ 76,655</td>
<td>$ 0</td>
<td>$ 511,855</td>
</tr>
<tr>
<td>Pier Column</td>
<td>Patch + ECE + Seal</td>
<td>$ 291,392</td>
<td>$ 130,987</td>
<td>$ 26,971</td>
<td>$ 449,350</td>
</tr>
<tr>
<td>Abutments</td>
<td>Patch + ECE + Seal</td>
<td>$ 77,769</td>
<td>$ 34,958</td>
<td>$ 13,486</td>
<td>$ 126,213</td>
</tr>
</tbody>
</table>
Service Life – Projected Concrete Damage

Projected Cumulative Concrete Damage of King Street Pier Caps, %

- 25% Damage @ 45 years of age
- 24% @ 42.5 years of age
- 2% @ 92.5 years of age

Replace at 25% damage
Case Study # 2
Eleven Bridges - VDOT

- Constructed in 1950’s (60 years old)
- Heavy traffic corridor
- Full replacement: costly, disruptive
PROBLEM
SCS Approach

SCS performed specific tests to quantify the extent of damage and determine the rate of deterioration.

– Cover Survey
– Corrosion Potential Survey
– Chloride Sampling
– Corrosion Rate Testing
– Continuity Testing
– Hammer Sounding
Spall and Delamination Comparison over Boulevard
2009 Siva Corrosion Services and 1997 Alpha Corporation

<table>
<thead>
<tr>
<th>Bridge Member</th>
<th>1997 Structure Damage (ft²)</th>
<th>2009 Structure Damage (ft²)</th>
<th>Damage Increase Percentage (1997-2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pier 1 - Southbound Cap - North Face</td>
<td>52</td>
<td>120</td>
<td>131%</td>
</tr>
<tr>
<td>Pier 1 - Southbound Cap - South Face</td>
<td>42</td>
<td>122</td>
<td>190%</td>
</tr>
<tr>
<td>Pier 1 - Southbound Cap - West Face</td>
<td>2</td>
<td>11</td>
<td>450%</td>
</tr>
<tr>
<td>Pier 1 - Southbound Cap - East Face</td>
<td>5</td>
<td>9</td>
<td>80%</td>
</tr>
<tr>
<td>Pier 1 - Southbound Cap - Top Face</td>
<td>3</td>
<td>18</td>
<td>500%</td>
</tr>
<tr>
<td>* Pier 1 - Southbound Cap - Bottom Face</td>
<td>127</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Total Pier 1 - Southbound Cap</td>
<td>231</td>
<td>379</td>
<td>64%</td>
</tr>
</tbody>
</table>

* Patch work for steel columns has caused a decrease in damaged concrete. Patches constitute 25% of bottom surface area. Patches are included in total surface area.

| Total Pier 1 - Column 1-4 | 168 | 302 | 80% |
| Total Pier 1 - SB Cap & Column 1-4 | 399 | 681 | 71% |

Notes:
- 1997 structure damage supplied by Alpha Corporation.
- 2009 structure damage supplied by Siva Corrosion Services.
- All calculations & pictorial representations of concrete damage are an estimation of actual concrete damage, based on dimensions & locations (insert notes).
- Siva Corrosion Services conducted spall and delamination survey for approximately 50% of the total structure.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Structure</th>
<th>Replacement cost</th>
<th>Repair cost</th>
<th>Cost Savings</th>
<th>Repair cost/Replacement cost, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boulevard</td>
<td>$1,931,202</td>
<td>$402,300</td>
<td>$1,528,902</td>
<td>21%</td>
</tr>
<tr>
<td>2</td>
<td>Hermitage Road</td>
<td>$3,240,312</td>
<td>$619,720</td>
<td>$2,620,592</td>
<td>19%</td>
</tr>
<tr>
<td>3</td>
<td>Laburnum Avenue</td>
<td>$1,730,258</td>
<td>$380,480</td>
<td>$1,349,778</td>
<td>22%</td>
</tr>
<tr>
<td>4</td>
<td>Lombardy/CSX</td>
<td>$5,821,420</td>
<td>$2,019,420</td>
<td>$3,802,000</td>
<td>35%</td>
</tr>
<tr>
<td>5</td>
<td>Overbrook Road</td>
<td>$1,147,005</td>
<td>$312,240</td>
<td>$834,765</td>
<td>27%</td>
</tr>
<tr>
<td>6</td>
<td>Ramp-A</td>
<td>$926,000</td>
<td>$146,440</td>
<td>$779,560</td>
<td>16%</td>
</tr>
<tr>
<td>7</td>
<td>Robin Hood Road</td>
<td>$1,877,817</td>
<td>$568,560</td>
<td>$1,309,257</td>
<td>30%</td>
</tr>
<tr>
<td>8</td>
<td>Sherwood Avenue</td>
<td>$1,595,045</td>
<td>$397,700</td>
<td>$1,197,345</td>
<td>25%</td>
</tr>
<tr>
<td>9</td>
<td>Upham Brook Run</td>
<td>$2,287,719</td>
<td>$429,620</td>
<td>$1,858,099</td>
<td>19%</td>
</tr>
<tr>
<td>10</td>
<td>Westwood Avenue</td>
<td>$3,592,000</td>
<td>$402,440</td>
<td>$3,189,560</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$24,148,778</td>
<td>$5,678,920</td>
<td>$18,469,858</td>
<td>24%</td>
</tr>
</tbody>
</table>
Solution Implementation
Electro-Chemical Extraction (ECE)
Solution Implementation

Galvanic Cathodic Protection (GCP)

Galvanic Cathodic Protection was Applied
GCP Effectiveness Monitoring
Preservation
Ribault River Bridge (SR-115)
Little Cedar Creek Bridge (I-95)
Cedar Creek Bridge (I-95)
Trout River Bridge (US-17)
Moncrief Creek Bridge (SR-111)
Trout River Bridge (SR-115)
Broward River Bridge (US-17)
San Pablo River Bridge (SR-10)
Cresent Beach Bridge
Patches Accelerate Corrosion

Good Encapsulation – New Corrosion

Courtesy of FDOT
Infrared Thermography (IRT)
Pier & Footers
Patch Corrosion Continues

Conventional encapsulation allows continued corrosion

Courtesy of FDOT
Removal of Existing CP Jacket
Six Inch Annulus
Encapsulation of a Titanium Anode within a Standard Pile Jacket

1) A fiberglass form is placed around the pile leaving an annular space between pile and form.
2) Form is filled with mortar/concrete.
Sacrificial Cathodic Protection

Arc-sprayed Zinc Anode
In Closing...

• Take right action at the right time
• Service Life - Project future condition of the structure
• Corrosion mitigation is successfully used to extend the service life
Questions?

Thank you!