

Seven Steps of Implementing In-Place Recycling by Public Agencies

Midwestern States Regional In-Place Recycling Conference Schaumburg, IL

Presented by:

Tim Aschenbrener, P.E.

Pavement & Materials Engineer Federal Highway Administration

September 10, 2013

Our Visit

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

Designate a Point of Contact

- Provide focus
- Comfortable with technical information and communication
- Obtain full support from top managers
- Partner with industry
- Lead training

Our Visit

• Designate a Point of Contact

Assess the Situation

- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

Assess the Situation Nationally

Environmental

Economics

Engineering

- 3" Mill & 3" HMA
- 3" CIR & 1.5" HMA

- Existing HMA (SN-0.2/inch)
- New HMA (SN-0.42/inch)
- Total SN-
- (3"*0.42)-3*0.2=0.66

- 0.3-CIR (SN-0.3/inch)
- 0.42 New ACP (SN-0.42/inch)
- Total SN-
- (3*(0.3-0.2)+0.42*1.5=0.93

40% Increase in SN value

Cost Comparison

- 3" Mill & 3" overlay
- 3" Milling-\$1.5/ Sq. Yd.
- 3" HMA- \$18/ Sq.Yd.

- 3" CIR & 1.5" overlay
- 3" CIR-\$4.5
- 1.5" HMA- \$9/ Sq.Yd.
- Total cost for one mile (32' wide)= \$370 K
- Total cost for one mile(32' wide)= \$253K

Long-Term Performance 9-year Performance CIR and 2" Overlay Section, Reno, Nevada

Long-Term Performance 20-year Performance - US-95 Nevada

Colorado DOT, Region 2 I-25 south of Pueblo

- Life Cycle Cost Analysis
 - 6-inch CIR and 4-inch overlay (\$24.7M)
 - 4-inch mill and 5.5-inch overlay (\$28.9M)

"Go Green" Calculations

- Save 17,000 tons of aggregate
- Save 1,200 tons of binder
- Recycle 85,000 tons of material

Assess the Situation Locally

Type of in-place recycling that offers biggest competitive advantage

- Geographic locations for aggregates hauled
- Type of traffic
- Type of pavement distresses
- Type of in-place recycling that offers most promise

Our Visit

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

- Goals
 - Try in-place recycling for the first time
 - Try a different type of in-place recycling
 - technique for the first time
 - Expand current number of projects by a certain number or percentage

Formulate a PLAN

- Strategies
 - What are you going to do?
 - Where are you going to do it?
 - How are you going to do it?
 - When are you going to do it?

EXAMPLE	In-Place Recycling: Type 1	In-Place Recycling: Type 2	
Year 1	Develop tools, train, communicate		
Year 2	One pilot project	Develop tools, train, communicate	
Year 3	One project per District	One pilot project	
Year 4	Expand use	One project per District	
Year 5	Keep tracking, communicating and improving	Expand use	

Our Visit

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

- Project selection guidelines
- Develop pavement design guidelines
- Develop mix design guidelines
- Develop construction specifications

Project Selection Guidelines

Right Location

Right Strategy Right Time

Timing of Rehabilitation Techniques

Existing Pavement Evaluation

What is a good strategy for surface raveling?

What is a good strategy for transverse and block cracking?

What is a good strategy for alligator cracking?

Pavement Design Guidelines

○ MEPDG

- o 1993-AASHTO Design Guide
 - ► Use structural number 0.28-0.35 for CIR

≻Mr. for CIR varies from low 200's to 1 M

Pavement Design Guidelines

FDR Method	Minimum Thickness of Riding Surface	Typical Structural Coefficient	
Mechanical	2" HMA	0.10 - 0.12	
Bituminous	Surface Treatment or Structural HMA	0.20 - 0.28	
Cement	Surface Treatment or Structural HMA	0.15 – 0.20	

Mix Design Process

Constructing a Successful Project

Constructing a Successful Project

- End-result specifications
- Inspector checklist
- ➢ Field acceptance testing
- Pre- and post-construction meetings
- Partnering successful projects are based

on win-win strategy

Our Visit

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools

Train Staff and Take Action

- Track and Evaluate Progress
- Communicate Results

Training

- NHI 131050 Asphalt Paving In-Place
 - **Recycling Technologies**
- > ARRA Basic Asphalt Recycling Manual
- > Just-in-time training for:
 - ✓ Project selection
 - ✓ Pavement and materials mix design
 - \checkmark Construction and inspection

- FHWA: <u>http://www.fhwa.dot.gov/pavement/recycling/currentproj.cfm</u>
- > National Center for Pavement
 - Preservation: http://www.pavementpreservation.org/
- Foundation for Pavement Preservation:
 www.fp2.org/
- Greenroads: <u>https://www.greenroads.org/</u>
- Pavement Recycling Systems: www.pavementrecycling.com

Our Visit

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

Develop a Tracking System

- Projects
- Volume of recycled materials
- Performance
- Dollars saved
- Environmental benefits

recycled

- -Costs, performance
- -Collect, tabulate and calculate
- Update specifications
- Continue improving process

Cost-Effectiveness for Nevada DOT

Category	ESALs	Strategy	Total GRAVEL FACTOR Numbers	Strategy Cost	Reduced Cost/ Mile	Change in SN
LOW	< 1 Million	2" Mill &fill	2"(0.35-0.18)= 0.34	625K	63%	(12%)
		3" CIR Double Chip Seal	3(0.28-0.18) =0.30	230K		
MEDIUM	> 1 Million < 3 Million	3" Mill 3" HMA	3"(0.35-0.18)=0.51	910K	37%	60%
		3" CIR 1.5" HMA	3" (0.28-0.18) +1.5" *0.35=0.82	570K		
HIGH	> 3 Million	3" Mill 6" HMA	(6")(0.35)-(3") (0.18)=1.56	1.82 M	28%	10%
		3" CIR 4" HMA	3(0.28-0.18) +4(0.35)=1.70	1.3 M		

Cost-Effectiveness for MNDOT

	3" CIR & 1.5" HMA	3" Mill & 3" HMA		
GF	$3(1.5 - 1.25) + (1.5" \times 2.25) = 4.125$	3 x (2.25-1.25) = 3		
Cost	CIR: 50,688 S.Y.@ \$2.30 = \$116,582 Recycling Binder: 196 tons @ \$535 = \$104,860	Rotomill: 50,688 S.Y. @ \$1.50 = \$76,032 HMA: 8,781 tons @ \$95.00 = \$834,195		
	1.25 inch HMA Overlay 3,659 tons @ \$95.00 = \$347,605			
	TOTAL: \$569,047	TOTAL: \$910,227		
	CIR & HMA provides 37% less cost Save \$341,180 37% increase in SN	GF for MNDOT New HMA = 2.25 CIR = 1.5 Existing HMA = 1.25		

Our Visit

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

- Marketing is critical to success
- Repeating the message several times
- Monitor, evaluate and report projects
- Conference presentations
- Videos
- Apply for awards

Summary

- Designate a Point of Contact
- Assess the Situation
- Formulate a Plan
- Develop Tools
- Train Staff and Take Action
- Track and Evaluate Progress
- Communicate Results

Seven Steps of Implementing In-Place Recycling by Public Agencies

Questions for you:

What additional steps are there?
 Which step is the most challenging?
 How can you overcome it?

Seven Steps of Implementing In-Place Recycling by Public Agencies

QUESTIONS ?

Tim Aschenbrener <u>Timothy.Aschenbrener@dot.gov</u> Pavement & Materials Engineer Federal Highway Administration