Full Depth Reclamation (FDR) Overview

Todd Thomas, P.E.

Laboratory Director, Colas Solutions

Outline

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

FDR Definition

Full Depth Reclamation (FDR) is a pavement rehabilitation technique in which the full flexible pavement section and a predetermined portion of the underlying materials are uniformly pulverized and blended together to produce a homogeneous stabilized base course.

Operational Schematic

Full Depth Reclamation

Primary stabilizing methods

- Pulverization only
- Mechanical stabilization
- Bituminous stabilization
- Chemical stabilization

olutions

Why recycle?

Correct pavement defects

Increase structural capacity

Geometry – Limited elevation rise or limited width

Reuse valuable resources

Economics

Reduce environmental impact

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

Overview

- Full Depth Reclamation uses bituminous products (CSS-1 or -1h, foamed AC) or cement / fly ash
- Through asphalt layer and into the base
- Grinding full depth in first pass then 2nd pass add and mix product.
- Grade, compact and seal after cure.

Some benefits of FDR

With proper design and process selection; crossslope and/or profile grade adjustments/corrections can be made.

EXISTING SECTION (BEFORE FDR)

Some benefits of FDR

Pavement widening can easily be accomplished.

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

Pavement Assessment

Visual inspection

- Defects and features to look for
 - Common distresses addressed Rutting, cracking (block, fatigue, reflective) – understand the cause and how deep (subgrade)
 - Drainage
 - Water have unobstructed access to drains / ditch?

olutions

- Are ditches present, deep enough, clogged?
- Inadequate drainage will create problems

Pavement Assessment

Visual inspection

- Coring / sampling for visual assessment
- Defects and features to look for
 - Edge support
 - Are shoulders and ditches adequate?
 - Pavement width
 - If the pavement will be widened, is there sufficient thickness, or will new material be used?
 - Patches
 - Patches are often an indication of a subgrade problem.

Pavement Assessment

Typical Pavement Deterioration and preservation or treatment method

Solutions

Candidate?

Candidate?

Solutions

Typical FDR Candidate

- Asphalt pavement with good drainage with side ditches or an internal drainage structure
- Asphalt pavement over aggregate base or stabilized base
 - Could be an existing gravel road with adequate thickness of material over the subgrade
- Very worn asphalt pavement with medium to high severity cracks going through entire asphalt layer
- Asphalt pavement with signs of rutting, fatigue cracking, or patches
 - If bituminous, not due to structural distress related to the subgrade

FDR Candidates

- Parking lots
- Low to high volume roads
- City streets with curbs
- Shoulders
- Interstate highways
- Airports

Idaho DOT

- Cement FDR (CRABS) since 1993
- Statewide over 3000 miles Interstates and state routes
- Performed because:
 - Inadequate base thickness
 - Non-uniform construction
 - Inadequate drainage
 - Excessive thickness of plant mix
 - Curb and gutter
 - Depleting good quality materials sources

Minnesota Counties and Cities

• Emulsion FDR – since early 2000's **Gravel roads**

City streets

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

FDR Equipment

- Road reclaimer (CAT, CMI/Terex, Wirtgen)
- Grader
- Dry chemical distributors
- Water trucks
- Emulsion / hot AC trucks
- Compactors
 - Vibratory padfoot roller
 - Pneumatic roller (for bituminous)
 - Vibratory static steel drum (finish)

- Spread add-stone in front of reclaimer, if any
- Pre-pulverize the bituminous surface at the specified depth (6"-12") while adjusting moisture content (under OMC bituminous; over OMC cement)
- Shape pulverized material to proper grade and cross slope
- Compact lightly to avoid moisture loss / carry traffic for short time (if necessary)
- Spread dry additive if required
- Perform pass at specified depth while mixing bituminous product; water also added if needed
- Compact with padfoot roller and
- Remove pad marks and shape with grader
- Final compaction

Road before pulverization

Pulverization and water addition (shaping if needed)

Cement or rock addition

Emulsion addition or cement mixed (3 to 4 hour working window with cement)

Padfoot rolling until walkout

Shave padfoot marks and final grading

Final compaction (often in combo with pneumatic)

Completed FDR

Curing

- Allow recycled mix to cure
 - Bituminous
 - Higher water to start will take longer to cure
 - Small quantity of cement used during construction reduces curing time
 - Cement Keep moist during curing
- Some state spec max. moisture content or number of days before overlay
 - Recommend maximum 50% of lab Modified
 Proctor OMC, as measured from in-place field sample (bituminous); must be firm
 - A few days to a week for cement

FDR Alternatives

- CIR ???
 - Don't perform CIR when FDR should be

Reconstruction

FDR Additives

- Emulsion 1-5 % (60 to 65% residue)
- Foamed Asphalt 0.75-3 %
- Cement 3-6 %*

*0%-1.5% if used in combination with bituminous stabilizers

- Lime Kiln Dust (LKD) 4-8 %
- Air voids are typically high range of about 8 to 15+ percent

FDR and Soil Stabilization Additives

Additives for Various Full Depth Reclamation Materials*

		Well- graded gravel	Poorly graded gravel	Silty gravel	Clayey gravel	Well- graded sand	Poorly graded sand	Silty sand	Clayey sand	Silt, Silt with sand	Lean clay	Elastic silt	Fat clay, fat clay with sand
	AASHTO	A-1-a	A-1-a	A-1-b	A-1-b or	A-1-b	A-3 or	A-2-4 or	A-2-6 or	A-4 or	A-6	A-5 or	A-7-6
					A-2-6		A-1-b	A-2-5	A-2-7	A-5		A-7-5	
	USCS	GW	GP	GM	GC	SW	SP	SM	SC	ML	CL	MH	СН
Full Depth Reclamation	Emulsion												
	FDR												
	SE > 30 or PI < 6												
	and												
	P200 < 20												
	Foamed												
	asphalt												
	SE > 30 or PI < 6												
	and dense												
	gradation												
	Portland												
	cement												
	PI<12 and RAP												
	< 50%												
Soil Stabilization	Lime												
	PI>10 and												
	P200<25 <u>or</u> PI												
	10-30 and and												
	P200>25, SO ₄												
	in clay < 3000												
	ppm												

*For the blend of all recycled layers

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

Surface Courses

Moisture content in the recycled mix must be low enough before recycled layer is covered

- HMA binder and wearing courses
- Surface treatments chip seal (double seal highly recommended)
- Dense-graded cold mixes

Bonding of any treatment is very important!

Pavement Design

 Typical structural coefficients – Each agency determines layer coefficients (by experience) – Units of 1/inch

– FDR:

- Cement: 0.14 to 0.20 (0.15 typical) though stiffer, has lower coefficient
- Bituminous: 0.20 to 0.28 (0.25 typical)
- Mechanical: Treat as aggregate base
- Aggregate base
 - 0.08 to 0.12 (0.11 typical)
- Note: 1993 pavement design guide to be replaced by MEPDG methodology

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

Longevity Factors

- Local conditions
- Climate
- Quality of materials
- Workmanship
- Affordability
- Proper project selection and design

Longevity Factors

FDR with surface treatment 7 to 10 years

FDR with HMA treatment Up to 20 years

CIR with surface treatment 6 to 8 years

CIR with HMA treatment 12 to 20 years

Surface treatment

1 to 7 years

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

Economic Assessment

FDR - Initial cost savings of 25% to 33% or higher compared to the cost of reconstruction have been observed

- 1. What is FDR?
- 2. Recycling overview
- 3. Pavement assessment
- 4. Construction and materials
- 5. Surface overlays / pavement design
- 6. Longevity factors
- 7. Economic Assessment
- 8. Summary

Summary

- Project selection
 - Distresses not excessive for the treatment
 - Drainage! Can't be over-emphasized.
- Investigation and Sampling
 - Design samples must represent the width and length and material changes of the project

Summary

- Materials
 - New aggregate or RAP for material improvement or depth improvement / widening can overcome material deficiencies
 - Dealing with fabric
- Construction
 - All personnel agency, prime, sub-contractor, material suppliers - review expectations and review processes prior to project
 - Calibrated equipment and double check
 - Added water
 - Compaction equipment, methods of control, and acceptance
 - Weather: Rain and freezing temperatures
 - Traffic release
 - Curing and overlay time

Summary

- Recycling works and has a proven track record
- Reduces costs and time
 - 25-33% or more savings
 - $-\frac{1}{2}$ to 1/3 the time of reconstruction
- Conserves energy
 - 50-70% reduction
- Conserves resources by using existing, in-place materials (often high quality)
- Eco-friendly by reducing the use of fossil fuels

Thank you

Todd Thomas, P.E.

Colas Solutions, Inc.

7374 Main Street

Cincinnati, Ohio 45244

Direct: 513-272-5657

Email: tthomas@colassolutions.com

www.colassolutions.com

