NEPPP SPRING 2013 MEETING

Scott T. Nazar

Materials Innovation Management
Bureau of Maintenance & Operations

Why Thin Asphalt Overlays?

- Shift from new construction to renewal and preservation
- Functional improvements for safety and smoothness

Benefits of Thin Asphalt Overlays

- Long service, low life-cycle cost
- Smooth surface
- Seal the surface
- Minimize traffic delays
- No curing time
- Low noise generation
- Can use in stage construction
- Restore skid resistance

Where does THMAO fit in a list of Preservation techniques?

- Crack Sealing
- Surface Treatment
 - Chip Seal (seal coat)
 - Slurry Seal Microsurfacing
 - Cape Seal
 - Fog Seal
- Thin Hot Mix Asphalt Overlay
 - Mill and overlay
 - Milling/Recycling
 - Full Depth Reclamation
 - Cold-In-Place with Emulsion or Foamed Asphalt

Treatment	Expected Life, yrs	Range	Cost, \$/SY	Range	Annual Cost, \$/lane-mile
Chip Seal	4.08	2.5 - 5	2.06	0.50 - 4.25	3,554.51
Slurry Seal	3.25	2 - 4	1.78	1.00 - 2.20	3,855.75
Micro-surfacing	4.67	4 - 6	3.31	2.30 - 6.75	4,989.81
Thin Surfacing	10.69	7 - 14	4.52	2.40 – 6.75	2,976.69

Special Provision

- 6.3 mm 100% passing 3/8 in.
- Dense –graded (6 sieve sizes) SRL
- PG 76-22 polymer modified
- N design = 75 gyrations
- Design voids = 4.0%
- Min. VMA = 16.5
- No RAP or RAS
- Greater than 50 F
- Optimum Rolling Pattern

Use Guidelines

- Only on structurally sound pavement
- Same as micro-surfacing
- For correcting surface distresses only
- Grind PCC first preferred

THMAO: overlay test

Cycles to failure > 500 High variability in data **Good Performance**

Tack Coat Evaluation

Shear Strength = 44.5 psi - Good Performance

THMAO: Friction Improvement

THMAO: IRI Improvement

THMAO- Misaligned Saw Cuts

Cameron Street Pilot Project

THMAO – Pre-Construction Conditions

THMAO: Summary

- Acceptable Mix Lab Performance
 - Permanent Deformation (SST)
 - Rutting and Moisture Resistance (HWTD)
 - Crack Resistance (Overly Test)
- Acceptable Tack Shear Resistance
- Improved Ride and Friction
- In-Place Average Density: 92.2%

THMAO-Future Pilot Projects

District 3-0, SR 220 in Lycoming County

THMAO-Future Pilot Projects

District 8-0, SR 220 in Lancaster County

