Corrosion Mitigation Systems for Existing Concrete Structures

Erik Thorp Vector Corrosion Technologies www.vector-corrosion.com

Corrosion Ravaged Columns Chicago, Illinois

Corrosion Mitigation Solutions

- Galvanic Protection Systems
- Electrochemical Treatments
- Cable Impregnation

ww.vector-corrosion.com

Corrosion Basics

Causes of Corrosion

- Chlorides
- Carbonation
- Dissimilar Metals

Results in the Destruction of the Steel's Passive Oxide Layer

Corrosion Cell in Concrete

Why Does This Occur?

Corrosion Potential for Steel in Concrete	
<u>Metal</u>	<u>Voltage</u>
Steel in Chloride-Free Concrete	0 to -200 mV
Steel in Chloride- Contaminated Concrete	-350 to -500 mV
*Typical potentials measured with respect to copper- copper sulfate electrode	

Corrosion Cell in Concrete

Patch Accelerated Corrosion

Galvanic Corrosion Protection Systems

Galvanic Protection Systems

- Two different metals are connected in same electrolyte (concrete)
- More "active" metal = anode
- More "noble" metal = cathode
- Anode corrodes to protect cathode
- Natural reaction
 - no external power required
- Safe for prestressed concrete

Potentials and Current Flow

Partial Galvanic Series	
<u>Metal</u>	<u>Voltage</u>
Zinc	-1100 mV
Steel in concrete	-200 mV to - 500 mV
*Typical potentials measured with respect to copper-copper sulfate	

electrode

electronic K^+ Na^+ ionic $CL^ CL^ OH^-$ Steel

e ⁻

Embedded Galvanic Anodes for Corrosion Prevention

Patch Accelerated Corrosion

Chloride Contaminated Concrete

Chloride-Free Patch

Potential Difference Between Patch and Chloride Contaminated Concrete Results in Accelerated Corrosion

Installed Galvanic Anode

Installation of Galvanic Anodes

Anode Installation

VECTOR CORROSION TECHNOLOGIES

Saw cut and cleaned repair area.

Anode Installation

Installing anodes around the perimeter of the repair rection composition composition and the perimeter of the repair rection composition c

Quick and Easy Installation

Anode Installation

111111

Testing anode connection to reinforcing steel.

Anode Installation

1111111111

Embedding anodes with repair material.

Joints and Interfaces

Corroded Joint Pittsburgh, Pennsylvania

Old Retaining Wall

Due to Corrosion

Öld Chloride Contaminated Concrete New Chloride-Free Concrete Extension

Surrounding Rebar is Protected

Anode Galvanically Protects · Adjacent Rebar

Bridge Widening Port Mann Bridge, Vancouver, British Columbia

Embedded Galvanic Anodes for Corrosion Control

Corrosion Control Anode Installation

Corrosion Activity is **Reduced In Rebar Anode Galvanically Protects** à Surrounding Rebar

Steel connection next to pre-drilled 2" diameter hole

Anode/Steel Connector

Anode

Steel Connection

2" Diameter Hole

Anode Connection to Reinforcing Steel

Predrilled Holes for CC Installation Parking Garage Deck

Galvanic Anodes in Prestressed Box Girder

Galvanic Anodes in Prestressed Box Girder

11111

VECTOR CORROSION TECHNOLOGIES
[[[[[]]]]]

11111111

VECTOR CORROSION TECHNOLOGIES

rosion com

Point Anodes vs. Distributed Anodes

Point Anodes Protection

Distributed Anodes Protection

www.vector-corrosion.com

Distributed Galvanic Anodes

- Distributed anode units are pre-manufactured
 - Zinc around a steel core
 - Integral connections
- Anode size and spacing: based on steel-toconcrete surface area ratio and service life

Applications

- Deck Overlays
- Abutment Encasements
- Column & Beam Encasements
- Interface Protection
- And more!

On Many Slab Bridges...

- Slabs are in good condition
- Deterioration at abutment around the key way

Typical Slab Bridge Abutment

Abutment Repair Detail With Galvanic Protection

Other Distributed Anode System Applications

Galvanic Strips In 8 Bridge Deck Overlays Lake County, OH

Bridge Column Repair Bridge Pier Cap Repair with with Reinforced Concrete Galvanic Anode Strips Jacket

Galvanic Anodes for Corrosion Prevention In New Construction

Galvashield N

Precast Closure Strip

Seawall Reconstruction

DECK PROTECTION

"Distributed" Protection with <u>Activated</u> Arc <u>Sprayed Thermal Zinc</u>

Electrochemical Treatments

- Chloride Extraction (ECE)
- Re-alkalization
- Lithium Impregnation (ASR Treatment)

ww.vector-corrosion.co

ww.vector-corrosion.co

ww.vector-corrosion.co

ECE Treatment Process

ECE Treatment Process

Cellulose Fiber Serves as Electrolyte

Installation Complete Ready to Start Treatment

Several Piers Wrapped and Undergoing ECE Treatment Omaha, Nebraska

Piers after ECE Treatment Cleaned and Sealed

Rainbow Bridge- Idaho

Problem: Corrosion or Grout related issues Example: Bleed water issues within duct

Impregnation Pattern

Corrosion Testing of Impregnation Material on Exposed Steel

Questions

Do we have a few more minutes?

Leister Bridge Cross Beam

Completed in 1999Monitored for 10 years

10 Year Monitoring - Current

ww.vector-corrosion.co

ROSION

Current Density

- Cathodic Prevention
 - European Standard EN 12696
 - Current Density 0.2-2mA/m²
 - No polarization criteria

- Leister Bridge
 - Ranged 0.6 mA/m² and 3.0 mA/m²
 - Overall mean of around 1.4 mA/m²

Approximate Zinc Consumption

Calculated based on current output and 85% utilization

Forensic Analysis after 10 yrs

Encasing Extent of pores Zinc Mortar containing white corrosion corrosion product products **Bright Zinc** substrate (top darker layer scraped off) Coherent Zinc interface substrate Repair mortar Uncorroded tie wires

(a)

(b)