Preservation Role in Risk-Based Inspections

Glenn A. Washer, PhD
University of Missouri
Columbia, MO
November 13, 2013
Midwest Bridge Preservation Partnership
This investigation was sponsored by TRB under the NCHRP Program. Data reported are work in progress. The contents of this presentation has not been reviewed by the project panel or NCHRP, nor do they constitute a standard, specification, or regulation.
NCHRP 12-82 Goals

• Goal: Improve the safety and reliability of bridges
 – focusing inspection efforts where most needed

• Optimize the use of resources
 – Better match inspection requirements to inspection needs
 – Develop a rational process for assessing inspection needs using reliability theories
Agenda

• What is Risk-Based Inspection
• How does Preservation fit in?
• Conclusion
Risk-Based Bridge Inspection

• Inspections that consider
 – The reliability of bridge elements
 • Likelihood of deterioration and damage
 • Condition, design, materials and loading
 – The consequences of that damage
 • Minor serviceability issues, safety issue?

• Inspection interval and scope
 – Match inspection requirements with inspection needs for a bridge
Motivation

Typical lifetime performance

Time to corrosion initiation for RC
Example Guidelines

• API (2002). "Risk-Based Inspection, API Recommended Practice 580." 45. (updated)
• API (2008). "Risk-Based Inspection Technology, API Recommended Practice 581."
• INTERIM ADVICE NOTE 148/12, Risk Based Principal Inspection Intervals
• Transport Wales Framework Lot 5, Task Order 5/2, BD 63/07 Risk Based Inspections Guidance Note February 2010
• NRC docs
Definitions

• **Reliability**: Ability of an item, component or system to operate safely under designated operating conditions for a designated period of time or number of cycles.

• **Risk**: Combination of the probability of an event and its consequence.
Risk – Based Approaches

\[R = POF \times C \]
\[R = \text{Likelihood} \times C \]
\[R = \text{Frequency} \times C \]
\[R = \text{Occurrence} \times C \]

Consequences:
- Economic
- Environmental
- Safety

Requires time interval
Reliability-Based Inspection (RBI)

• What can go wrong?
 – Identify damage modes for elements
 – Deterioration mechanisms

• How likely is it?
 • Categorization based on reliability characteristics of bridge elements
 • Based on expert judgment and expert elicitations
 • Past experience
 • Analysis of existing or potential damage modes
 • Deterioration data if available (and relevant)
 • Preservation activities

• What are the consequences?
 – How important is it?
Factors in RBI

• Damage Modes and deterioration mechanisms
 – Attributes affecting likelihood
• Occurrence factor (POF)
• Consequences
 – Experience, redundancy, situation (ADT, traffic speed), analysis, etc.
Damage Modes

Damage Mode: Section Loss
Det. Mechanism: Corrosion

Damage Mode: Impact?
Det. Mechanism: Impact
Identifying Damage Modes

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>Likelihood (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart attack</td>
<td>●●●●●●●●●●●●●●●</td>
</tr>
<tr>
<td>Hit by car</td>
<td>●●●●●●●●●●●●●●●</td>
</tr>
<tr>
<td>Murdered</td>
<td>●●●●●●●●●●●●●●●</td>
</tr>
<tr>
<td>Brain Aneurism</td>
<td>●●●●●●●●●●●●●●●</td>
</tr>
<tr>
<td>Lightning</td>
<td>●●●●●●●●●●●●●●●</td>
</tr>
</tbody>
</table>

http://thewritepractice.com/emergency-your-creativity-is-dying/
Concept - Likelihood

Bad attributes

Unique
Where does a bridge fall on the distribution?

Yr. in Condition Rating

Loc 1.544
Scale 0.7701
N 357
Concept - Consequences

• Water = low consequence
• Nuclear waste = Severe
Consequences…

- Ex. Multi-girder 3 span PS vs. pin and hanger in two-girder (fracture critical) bridge
- Low, moderate, high and severe
- Design characteristics, scenario, documented experience, calculation
Risk Matrix

- Plot values of likelihood and consequence
- Components in the top right corner are “high risk”
- High likelihood may not mean high risk, if consequence is small
- High consequence may not be high risk, if the likelihood is low
Preservation Effect

![Graph showing the preservation effect over time](image)
Example
Potential Benefits of RBI

• Better, more effective and purposeful inspections
 – Inspection plan (scope and interval) supported by engineering assessment by RAP
 • Vs. Calendar-based inspection strategy
 – Rational inspection strategies
 • Flexible intervals based on need and engineering analysis

• Allocate resources more effectively
 – Focus inspections resources where most needed

• Value-added to preservation activities

• Improved bridge reliability and safety
Preservation Role in RBI

- Preservation can reduce the POF and thereby reduce the risk
 - Reduce unnecessary inspections
 - Focus inspection where most needed
 - Allocate resources more effectively
Questions