2012 National Equipment Fleet Management Conference

Advanced GHG Rule
Vehicle Speed Limiter and
Automatic Engine
Shutdown Prorate Strategies
& Advanced Technologies

David McKenna
Director,
Powertrain Sales
EPA and DOT/NHTSA have published final GHG and FE standards for heavy duty vehicles
- Mandatory from model year 2014
- New targets model year 2017

Sold trucks must be equipped with EPA approved features (e.g. aerodynamic kit)
- "Innovative technologies" = Super Econodyne generates credits

Canada and Mexico likely to follow

EPA promises a Phase 2 regulation in 2020 with an integrated vehicle approach that could be harmonized with EU
EPA’s GHG Emissions Standards, and NHTSA’s Fuel Efficiency Standards

- Separate engine and vehicle standards
- NHTSA standard is aligned with EPA CO₂ standard
 - NHTSA don’t cover other GHG emissions
- Three engines categories
 - Light Heavy-Duty
 - Vocational
 - Tractor
- Three types of heavy-duty vehicles
 - Heavy-duty Pickup Trucks and Vans
 - Vocational Vehicles, incl. buses
 - Combination Tractors
- Both standards allow early compliance from 2013
- Standards will be subject to future tightening (post 2020)
Pro-rated Speed Limiters Credit Generators

Allows for:
- Expiration
- Increased speed for passing
- Benefit is most sensitive to expiration mileage values

Effective speed = \(\text{ExF} \times \left(\text{STF} \times \text{STSL} + (1-\text{STF}) \times \text{DSL}\right) + (1-\text{ExF}) \times 65 \text{ MPH}\)

- \(\text{ExF} = \) expiration point miles/1,259,000 miles
- \(\text{STF} = \) max # of allowable soft top operation hours per day / 3.9 hours for day cabs
- \(\text{STF} = \) max # of allowable soft top operation hours per day / 7.3 hours for sleeper cabs
- \(\text{STSL} = \) the soft top speed limit
- \(\text{DSL} = \) default speed limit
Anti-idle Credit Generators

Prorated credit factors:
- Expiration
- Allowable idle time per year
- More sensitive to expiration mileage

Effective AES Input:
- \(= 5 \text{ g CO}_2/\text{ton-mile} \times (\text{miles at exp./1,259,000 miles}) \times \)
- \[1-(\text{maximum allowable number of idling hours per year}/1,800 \text{ hours})\]
Fuel Consumption & GHG

Truck Tractors Class 7 and 8

- NHTSA fuel consumption standards

<table>
<thead>
<tr>
<th></th>
<th>Fuel consumption standards MY 2016 (gallons/1000 ton miles)</th>
<th>Fuel consumption standards MY 2017 and later (gallons/1000 ton miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day cab</td>
<td>Sleeper cab</td>
</tr>
<tr>
<td></td>
<td>Class 7</td>
<td>Class 8</td>
</tr>
<tr>
<td>Low roof</td>
<td>10.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Mid roof</td>
<td>11.7</td>
<td>8.7</td>
</tr>
<tr>
<td>High roof</td>
<td>12.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Fuel Consumption & GHG

Heavy-Duty Vocational Vehicle
- NHTSA fuel consumption standards

| | Fuel consumption standards MY 2016 (gallons/1000 ton miles) | | |
|-----------------------|---|---------|
| | Light Heavy Vehicles | Medium Heavy Vehicles | Heavy Heavy Vehicles |
| Class 2b-5 | 38.1 | 23.0 | 22.2 |
| Standard | 36.7 | 22.1 | 21.8 |

Source: Page 920
Fuel Efficiency

Class 2b-8 Vocational Vehicles

- Vehicle-based standard calculated via a vehicle simulation model (GEM)
- Only one input parameter
 - tire rolling resistance

<table>
<thead>
<tr>
<th>CO₂ (gram/ton-mile) standards for Vocational vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Heavy-Duty Class 2b-5</td>
</tr>
<tr>
<td>MY 2014-2016: 388</td>
</tr>
<tr>
<td>MY 2017-: 373</td>
</tr>
<tr>
<td>Medium Heavy-Duty Class 6-7</td>
</tr>
<tr>
<td>MY 2014-2016: 234</td>
</tr>
<tr>
<td>MY 2017-: 225</td>
</tr>
<tr>
<td>Heavy Heavy-Duty Class 8</td>
</tr>
<tr>
<td>MY 2014-2016: 226</td>
</tr>
<tr>
<td>MY 2017-: 222</td>
</tr>
</tbody>
</table>

Source: Page 668

Mack Lehigh Valley, Press Event
June 20, 2012
Fuel Consumption Impactors

CO₂ reduction for different features
- Example: Class 8 high roof sleeper cab

- SmartWay bin III (cd 0.60) 5.5
- Adv. SmartWay bin IV (cd 0.52) 10.7
- Adv. SmartWay II bin V (cd 0.47) 13.6
- Tires SmartWay (Steer 6.6, Drive 7.0) 3.0
- Tires Adv. SmartWay (Steer 5.7, Drive 6.0) 5.5
- Weight reduction Al wheels (lb -400) 0.3
- Idle reduction after 300 sec 5.0
- Speed limiter (63 mph) 3.1
- Speed limiter (60 mph) 7.2
- Needed reduction vs Conventional tractor 14.1

CO₂ gram/ton-mile
Fuel Consumption Profile

1. Idle Truck Stationary
 - Idle Speeds
 - Idle Shutdowns
 - PTO Settings

2. Acceleration
 - Powertrain
 - Shift RPM
 - Tires

3. Cruise at Steady Vehicle Speed
 - Aerodynamics
 - Tires
 - Cruise RPM

4. Deceleration
 - Tires
 - Aerodynamics

Duty Cycles
What uses Fuel When

Innovative Technologies are Required
High engine fuel efficiency + mDRIVE transmission optimization + Super C125 overdrive axles

Result: Complete system optimization, including hardware and software
Complete vehicle system evolution, providing exceptional fuel efficiency while maintaining excellent performance and drivability.

Evolution on all the Powertrain and vehicle components MP8-445SE, mDRIVE, C125 axles and software.

The SE package is designed to “down speed” the engine speed by approximately 200 rpm at highway speeds.

This reduces CO$_2$ and increases highway fuel economy about 2% over today’s vehicle performance.

At 65 mph, the engine will cruise at 1160 rpm (instead of 1380 rpm).

CoPilot Readout Screen:

- 1160 RPM
- 62 MPH
- 12th GEAR
Super Econodyne MP8

Engine Load At 65mph

Best Fuel Efficiency Here

Good Fuel Efficiency Here

Torque Curve

Torque

Idle 1150 1450

RPM

Mack Lehigh Valley, Press Event
June 20, 2012
Sweet Spot Optimization

MP8-445SE Package

- Much broader “sweet spot” of engine operation than typical Mack Econodyne engine.
- Allows engine to operate at maximum efficiency, even at road speeds higher than 65 mph.
LoadSense Variable Torque

- Adjusts the usable engine torque to suit the vehicle’s overall weight
- Time to speed is the same empty or loaded
- Maximum engine power is always available on GCW’s of 74,000 lbs. or higher
- mDRIVE and Manuals
Fuel Efficiency

- Smooth Cruise

Reduces cruise set point when climbing hills (based on torque demand) → Less power required, saves fuel

Increases cruise set point when going downhill → makes up for time lost in uphill → provides higher speed at bottom of next hill, saves fuel

Vehicle speed

Torque

Vehicle Cruise Control set Speed

Mack Lehigh Valley, Press Event
June 20, 2012
Fuel Consumption Top 10 Impactors

<table>
<thead>
<tr>
<th>Rank</th>
<th>Category</th>
<th>If You Use or Have:</th>
<th>Instead Of:</th>
<th>MPG Improves By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DRIVERS</td>
<td>Best Drivers</td>
<td>Worst Drivers</td>
<td>Up to 35%</td>
</tr>
<tr>
<td>2</td>
<td>SPEED With Poor Aerodynamics</td>
<td>If you go slower by: 5 MPH</td>
<td>No Change</td>
<td>10 - 15%</td>
</tr>
<tr>
<td>3</td>
<td>TIRES Deep Lug ➔ Rib</td>
<td>STEER / DRIVE / TRAILER Rib / Rib / Shallow Rib</td>
<td>STEER / DRIVE / TRAILER Rib / Deep Lug / Rib</td>
<td>6 - 14%</td>
</tr>
<tr>
<td>4</td>
<td>IDLING With A/C on @ 1000 RPM</td>
<td>Zero Idle Time</td>
<td>50%</td>
<td>7 - 10%</td>
</tr>
<tr>
<td>5</td>
<td>TRAILERS</td>
<td>Single Van</td>
<td>Double Van</td>
<td>6 - 10%</td>
</tr>
<tr>
<td>6</td>
<td>AERODYNAMICS With Cab Roof Devices</td>
<td>Full Roof Fairing</td>
<td>Nothing</td>
<td>Up to 15%</td>
</tr>
<tr>
<td>7</td>
<td>SPEED With Excellent Aerodynamics</td>
<td>If you go slower by: 5 MPH</td>
<td>No Change</td>
<td>4 - 10%</td>
</tr>
<tr>
<td>8</td>
<td>TIRES Lug ➔ Rib</td>
<td>STEER / DRIVE / TRAILER Rib / Rib / Shallow Rib</td>
<td>STEER / DRIVE / TRAILER Rib / Lug / Standard Rib</td>
<td>4 - 9%</td>
</tr>
<tr>
<td>9</td>
<td>ENGINES</td>
<td>Cruise Control</td>
<td>No Cruise Control</td>
<td>Up to 6%</td>
</tr>
</tbody>
</table>