Understanding and Using Asphalt Emulsion

Emulsion 101 by Jack Dougherty

Rocky Mountain West Pavement Preservation

Peppermill, Reno 10-5-2011
Why is emulsion used?

- Liquid
- Saves Energy
- Aggregate coating
- No fire hazard
- Environmentally clean
Asphalt Emulsion Advantages

- Low Storage and application temperature
- Construction versatility
- Reduced energy requirement
- Reduce air pollution
- High mix production rate
- High seal coat stone retention (min. bleeding)
- High natural adhesion
- Wide grade selection
Disadvantages

- Lack of freeze resistance
- Some types may suffer early rain damage
- Need curing period to develop tensile strength
Artists’ Perspective

- Oil Base: Type of oil and quantity
- Lacquers: solvent/evaporation rate
- Latex: Water
Asphalt Technology Perspective

- HOT APPLIED Visco-elastic / VGO
- CUTBACKS Solvents / Evaporation rate
- EMULSIONS Surfactants / water
Asphalt Cement Can Be Liquefied By:

- Heat
- Blending With a petroleum Solvent
- Emulsifying with water (and an Emulsifying Agent)
Emulsified Asphalts - Production & Use

- What are emulsified asphalts?
- How is emulsified asphalt manufactured?
- Uses of emulsified asphalts
 - Construction
 - Maintenance
Chemistry Of Asphalt Emulsions

- Emulsified asphalt is a dispersion of asphalt cement particles in water with the aid of an emulsifying agent (or “system”)

- The asphalt cement is dispersed in the liquid medium in the form of tiny droplets ranging from about one to ten microns in diameter

- In the manufacturing process agitation and surface active agents are required for emulsification
Type of Emulsions

- **Cationic:**
 - Asphalt droplets having a positive (+) charge

- **Anionic:**
 - Asphalt droplets having a negative (-) charge

- **Nonionic:** Neutral Charge on asphalt particles

- Emulsion type determined by emulsifier chemical
Specifications

- **Emulsified Asphalt**
 - AASHTO M140
 - ASTM D977
 - Anionic
 - Nonionic
 - Some Cationic

- **Cationic Emulsified Asphalt**
 - AASHTO M208
 - ASTM D2397
 - Cationic only
Chemistry of Asphalt Emulsions
Emulsion Breakage

- Evaporation
- Chemical
- Surface contact
- Temperature
Emulsion Deposition

Asphalt Emulsion Droplet

Emulsifier

Deposited Asphalt

Aggregate
The Manufacture Of Asphalt Emulsions

- **Liquid State:**
 - Possess the handling and ecological advantages of water

- **Cured State:**
 - Possess the adhesive durability and water resistant properties of a paving asphalt
CHARLOTTE® COLLOID MILLS
FOR ASPHALT EMULSIONS

G100 25 tph with 100 HP motor
G125 40 tph with 125 HP motor

Industrial head (2 pieces)
Factors That Affect Emulsification

- Asphalt (caustic treated-Recycled lube oil treated)
- Soap Type / Soap Content
- pH
- Asphalt Temperature
- Soap Temperature
- Mill Gap
- Back Pressure
- Discharge Temperature
- Water hardness
Factors effecting particle size

- Temperature of components
- Type and quantity of surfactant
- Mill clearance
- Mill “dwell time”
 - Back pressure
- Ionic strength of water phase
Adjusting Emulsion Viscosity

- Low Viscosity
 - Increase Mono-amine
 - Increase Residue
 - Use Thickener
 - Decrease mill gap
 - Rise Asphalt Temp
 - Rise Soap Temp
 - Check pH

- High Viscosity
 - Use Amido Amine
 - Use CaCl / NaCl
 - Increase mill gap
 - Use “Durco”
 - Lower Residue
 - Lower Asphalt Temp
 - Lower Soap Temp
 - Check pH
Factors Effecting Sieve

- Recycled Lube Oil in asphalt
- Inadequate saponification or not enough surfactant
- Shear sensitive emulsifiers
- High shearing mixers
- High shear pumps
- Mill Gap
- Boiling on Discharge
- Hard water
- Hot spots in tank or live steam
Factors Effecting Storage

- High settlement
 - Low Residue
 - Excess or insufficient Acid or caustic
 - Too much salt
 - Large particle size
 - Insufficient surfactant – particle charge

Storage Temperature
- Hot spots
- Too cold

Surface area
Factors Effecting Setting / Breaking Rate

- More surfactant longer break longer setting time
 - Coating reduced with lower surfactant but increase set and break.
- Non ionics slow breaking and setting time
- Lignosulfonates and Aminated lignums slow breaking and setting time.
Keys to making “Good Soap”

- Lignins (Indulin SAL, Indulin C, Polyphon, W-5 W2 etc)
 - If in powder form add to warm water Then add Acid

- Tall Oils
 - Add half of the caustic Then add to 130F Water The TO . Then the remaining caustic

- Fatty Amines
 - Same as Tall Oil

- Nonionics
 - Many inactive above 140 F

- Correct pH
 - 3.5 pH Minimum for Amines (except Quats)
 - 10+ for Anionic Tall Oil or Tallow – excess critical in High Floats
Anionic Materials

Materials
- Tall Oil
- Sodium Hydroxide
- Potassium Hydroxide
- Sodium Chloride
- Methyl Oleate
- Tallow
- Vinsol Resin
- Sodium Lignosulfonate
- Alpha Olefin Sulfonate
- Clay

Function
- RS/MS/HF emulsifier
- Create soap
- Create soap
- Reduce emulsion viscosity
- HFRS-2 additive
- HFRS-2 additive
- Emulsifier/stabilizer for MS & SS
- Stabilizer for SS
- QS-h emulsifier
- Reduces settlement
Cationic Materials

Materials
- Amines, Mono- or di-
- Amidoamine
- Quaternary ammonium salts
- Ligniamine
- Hydrochloric acid
- Calcium chloride

Function
- CRS, CMS emulsifier
- CRS, CMS, CQS emulsifier
- CSS emulsifier
- Create soap
- Reduce emulsion viscosity
Emulsion Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Cationic</th>
<th>Anionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid Setting</td>
<td>CRS</td>
<td>RS</td>
</tr>
<tr>
<td>Mixing</td>
<td>CMS</td>
<td>MS</td>
</tr>
<tr>
<td>Slow Setting</td>
<td>CSS</td>
<td>SS</td>
</tr>
<tr>
<td>High Float</td>
<td>CQS</td>
<td>HFRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HFMS</td>
</tr>
<tr>
<td>Control Setting</td>
<td>CQS</td>
<td>QS</td>
</tr>
</tbody>
</table>

Different grades have different usage in highway construction.
Typical Asphalt Emulsion Formulation

<table>
<thead>
<tr>
<th></th>
<th>CRS-2:</th>
<th>RS-2:</th>
<th>SS-1h:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asphalt: 67%</td>
<td>Asphalt: 65%</td>
<td>Asphalt: 60%</td>
</tr>
<tr>
<td></td>
<td>F.A. Diamine: 0.2%</td>
<td>Tall Oil: 0.2%</td>
<td>Vinsol Resin: 0.75%</td>
</tr>
<tr>
<td></td>
<td>HCL: 0.1%</td>
<td>NaOH.: 0.04%</td>
<td>Na Ligno-SO₄: 0.75%</td>
</tr>
<tr>
<td></td>
<td>Water: 32.7%</td>
<td>Water: 34.76%</td>
<td>NaOH: 0.09%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water: 38.41%</td>
</tr>
<tr>
<td>CMS-2S:</td>
<td>Asphalt: 62%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.A. Diamine: 0.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCL: 0.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naphtha: 12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water: 25.4 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Emulsion Tests

- **Emulsion Property**
 - Emulsion handling
 - Emulsion stability
 - Emulsion type
 - Emulsion grade
 - Asphalt grade
 - Asphalt content

- **Test Procedure**
 - Viscosity
 - Sieve, storage stability
 - Particle charge
 - Classification, mixing test, cement mixing
 - Penetration, Original DSR (ADOT)
 - Distillation or Evap

- **Plus specification**
 - Softening pt
 - Torsional Recovery
 - Latex/Polymer %
 - Other per agency specification
Why surface treat

- To seal
- To rejuvenate
- To reinforce
- To provide skid resistance
- To provide demarcation
- To provide improved visibility
General Uses of Asphalt Emulsions

- Rapid setting (RS, CRS, or HFRS)
 - Chip seals
 - Surface treatments
 - Sand seals
 - Penetration treatments
General Uses of Asphalt Emulsions

- Medium setting (MS, CMS, or HFMS)
- Plant mix (cold or hot)
- Seal coat and surface treatments
- Tack coat
- Crack sealing
- Road mix
- Patching mix (for immediate use)
General Uses of Asphalt Emulsions

- Slow setting (SS, CSS)
- Cold Plant mix
- Road mix
- Tack coat (diluted)
- Fog seal (diluted)
- Dust palliative
- Mulching
- Slurry seal coat
QS slurry seal

- **Types:**
 - Cationic
 - Emulsion Plus Mix Aid = QS slurry
 - Fast set
 - No mixing stability
 - Retards Set
 - Anionic
 - Emulsion Plus Setting Agent = QS slurry
 - Long Mixing Cycle without Setting agent
 - Control Set