Introduction to Slurry Seals & Microsurfacing
FP2 Inc

Jim Moulthrop, P.E.
Executive Director
Austin, TX
FP2 Inc.

- Industry supported trade association
- Major sponsors are NAPA, ISSA, AEMA, ARRA, Asphalt Institute, IGGA, Colas, MeadWestvaco, Western Emulsions
- Others supporters are contractors, material suppliers, equipment manufactures, polymer suppliers
Priorities:

- Advocacy for preservation language in the SAFETEA-LU re-authorization
- Promotion of the benefits of pavement preservation
- Support research programs included in the FHWA System Preservation Roadmap
- Financially support the NCPP
Acknowledgement

The National Center for Pavement Preservation
@ Michigan State University
Slurry Seals or Microsurfacing are used to weatherproof and delay age hardening caused by oxidation, to maximize the life of existing pavements.
Surface Correction

To restore desirable functional surface characteristics such as:

- Skid resistance
- Crack filling
- Weatherproofing
- Raveling
- Aesthetics and uniformity
Slurry Seals
History of Slurry Seals

✓ Developed in Germany early 1930's
✓ Mix of fine aggregate, binder, water
✓ Novel maintenance technique
✓ Marked the beginning of slurry seals
✓ Made more practical with improved emulsifiers and machinery in 1960's
Description of Slurry Seals

✓ Mixture of asphalt emulsion, graded aggregates, mineral filler & water
✓ Placed on continuous basis
✓ Portland cement, lime, fly ash used
✓ Free flowing consistency
✓ Does not add structural capacity
✓ ISSA - 105
Project Selection for Slurry Seals

- Sound, well-drained bases, surfaces and shoulders
- Free of distresses, potholes, cracking
- Appropriate for:
 - Raveling, Oxidized Pavement w/ Hairline Cracks
- Not Appropriate for:
 - Cracking, Base Failures, Distressed HMA Layers
Project Selection for Slurry Seals

<table>
<thead>
<tr>
<th>Applications</th>
<th>Aggregate Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Void Filling</td>
<td>X</td>
</tr>
<tr>
<td>Wearing Course (ADT)</td>
<td></td>
</tr>
<tr>
<td>< 100</td>
<td>X</td>
</tr>
<tr>
<td>100 - 1,000</td>
<td></td>
</tr>
<tr>
<td>1,000 - 20,000</td>
<td></td>
</tr>
<tr>
<td>Minor Shape Correction</td>
<td></td>
</tr>
</tbody>
</table>
Slurry Seal:

two primary applications

1. **Pavement Preservation**
 to prevent surface deterioration

2. **Corrective Maintenance**
 to renew surface characteristics
Local Streets

Slurry Seal
Microsurfacing
History of Microsurfacing

- Developed in Germany late 1960’s
- Thicker version of conventional slurry
- Applied in narrow courses for ruts
- Incorporated special polymers to promote stability in multi-layers
- Introduced in the U.S. in 1980’s
Description of Microsurfacing

“A designed mixture of polymer modified emulsified asphalt, mineral aggregate, mineral filler, water, or other additives, proportioned, mixed, and uniformly spread over a properly prepared surface.”

- ISSA A-143
- State DOT Specifications
- ASTM D-6372
Project Selection for Microsurfacing

- Sound and well-drained surfaces
- No distresses, potholes, and/or cracking
- Appropriate for:
 - Raveling, Oxidized Pavement, Rutting, Rough Pavements w/ Short Wavelengths
- Not Appropriate for:
 - Cracking, Base Failures, Distressed HMA Layers
Project Selection for Microsurfacing

<table>
<thead>
<tr>
<th>Applications</th>
<th>Aggregate Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
</tr>
<tr>
<td>Void Filling</td>
<td>X</td>
</tr>
<tr>
<td>Wearing Course (ADT)</td>
<td></td>
</tr>
<tr>
<td>< 100</td>
<td>X</td>
</tr>
<tr>
<td>100 - 1,000</td>
<td>X</td>
</tr>
<tr>
<td>1,000 - 20,000</td>
<td>X</td>
</tr>
<tr>
<td>> 20,000</td>
<td></td>
</tr>
<tr>
<td>Minor Shape Correction</td>
<td></td>
</tr>
<tr>
<td>0.4-0.8 inch (10-20 mm)</td>
<td>X</td>
</tr>
<tr>
<td>Rut-filling</td>
<td>X</td>
</tr>
</tbody>
</table>

[FP²](#)
Microsurfacing Advantages

✓ Mix can be placed in thicker lifts while remaining stable
✓ Macrotecture of the mix remains
✓ Quick setting for traffic
✓ Enhanced durability
Uses

Interstate System

Microsurfacing
Uses

Major Arterials

Microsurfacing
Uses

Secondary System

Microsurfacing
Comparisons

<table>
<thead>
<tr>
<th>Slurry Seals</th>
<th>Microsurfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ May use polymers</td>
<td>✓ Always use polymers</td>
</tr>
<tr>
<td>✓ Thickness equal to largest stone</td>
<td>✓ Thickness is 2-3 largest stone size</td>
</tr>
<tr>
<td>✓ Evaporative break</td>
<td>✓ Chemical break</td>
</tr>
<tr>
<td>✓ Environmentally-dependent curing</td>
<td>✓ Non-environment dependent curing</td>
</tr>
<tr>
<td>✓ Seals, restores surface texture, stops raveling</td>
<td>✓ Rut-filling, restores surface profile</td>
</tr>
</tbody>
</table>
Expected Performance

Slurry Seals
- Life Extension 3-5 years (good road)
- Longevity 4 to 7 years

Microsurfacing
- Life Extension 4-8 years (good road)
- Longevity 6 to 10 years
- Rut-filling performance depends on underlying pavement condition
- Traffic is not a limiting factor
Typical Life Extensions

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pavement Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good (PCI=80)</td>
</tr>
<tr>
<td>Slurry Seals</td>
<td>3 – 5 yrs.</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>4 – 8 yrs.</td>
</tr>
</tbody>
</table>
Application Rates

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Aggregate Type</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurry Seals</td>
<td></td>
<td>8–12 lb/yd² (4.3–6.5 kg/m²)</td>
<td>12–20 lb/yd² (6.5–10.8 kg/m²)</td>
<td>18–30 lb/yd² (9.8–16.3 kg/m²)</td>
</tr>
<tr>
<td>Micro-surfacing</td>
<td></td>
<td></td>
<td>10–20 lb/yd² (5.4–10.8 kg/m²)</td>
<td>15–30 lb/yd² (8.1–16.3 kg/m²)</td>
</tr>
</tbody>
</table>
Application Thickness

Type I - Slurry
- 1/8"

Type II - Micro
- 1/4"
- 3/8"
- 1/2"
- 5/8"

2 course Micro 28# - 2FA

Micro 38# - 3FA

Micro 50# - 4FA

Micro Rut-fill

1"
Specifications

Method Based
✓ Design, materials, methods, payment

Performance Based
✓ Define outcomes
✓ Immediate response safety problems
✓ Flexibility
✓ Risk shifted to contractor
✓ Partnership between agency/contractor
Specifications (cont)

Warranties

✓ Description of work, definitions
✓ Initial acceptance terms
✓ Warranty bond description
✓ Rights and responsibilities of parties
✓ Evaluation method
✓ Requirements and conflict resolution
✓ Non-extension of contract
✓ Measurement and payment
Responsibilities

Inspection

✓ Adherence to Specifications
✓ Document quantities
 ▪ Placed versus planned
✓ Actual rate of spread
 ▪ Too little or too much placement
Methods of Payment

Slurry Seal
- ✓ Materials, equipment, cleaning labor, bond coat, mix placement

Microsurfacing
- ✓ Standard: paid by area or weight
- ✓ Rut-filling: paid by weight
- ✓ Materials, equipment, labor, cleaning, marker replacement, tack coats if required
Keys To Success

✓ Site Selection
✓ Equipment Calibration
✓ Material Consistency
✓ Contractor Performance
✓ Project Inspection
✓ Information
Questions?