

RMRC Status Update:

Past and Current Research

Dr. Jeffrey S. Melton
Outreach Director
Recycled Materials Resource Center
University of New Hampshire

RMRC Overview

MISSION

Overcome barriers to the appropriate use of recycled materials in the highway environment

- Established in 1998 \$14,000,000 in Funding
- National center in partnership with US Federal Highway Administration
- Focus on the long term engineering and environmental performance of recycled materials in the highway environment
- Main activities are research and outreach

Basic Premise of Recycling

From WI DOT – When recycling in roads, they want their roads to:

"Perform as well or better for the same or less cost"

But what is the "cost"?

Meaning of Value

- Value is used in two ways:
 - Value is used as a measure of what you get for you money.
 - Value is also used to define what is a good or bad application for a given material.
 - They are not the same thing and can be at odds.

Value For Money

3/4" Crushed Granite \$25/yd

3/4" Dixie Pink \$240/yd

Value of a Material in Recycling

- The RMRC promotes the use of RAP in HMA/WMA as the best or highest value use of RAP.
- However, local conditions do matter, and saving RAP for HMA may not be the best value for the money.

RMRC Past Projects

http://www.recycledmaterials.org/R esearch/past/pastresearch.asp

RMRC Project 16:
Using Foamed Asphalt as a
Stabilizing Agent in Full Depth
Reclamation of Route 8 in
Belgrade, Maine

Brian Marquis, Dale Peabody and Rajib Mallick

Foamed Asphalt Train

Compacting the Foamed Asphalt

36 Hour Cured Foamed Asphalt

RMRC Project 17:

DEVELOPMENT OF A RATIONAL AND PRACTICAL MIX DESIGN SYSTEM FOR FULL DEPTH RECLAIMED (FDR) MIXES

Rajib B. Mallick Prithvi S. Kandhal Elton Ray Brown Richard L. Bradbury Edward J. Kearney

Pavement for Rehabilitation

FDR Using Superpave Compactor

Additive Contents

Water 2%, 4%, 6%, 8%, and 10%

Emulsion 1%, 3%, 5%, and 7%

Cement 5%

Emulsion and Cement 3%

Emulsion and 2% Cement

Emulsion and Lime 3%

Emulsion and 2% Lime

Note: 2% pre-mix water was added to

each mix

Example of Laboratory Data

Reclaimer

Test Sections: 3.4 % emulsion, 3.4 % emulsion with lime, water, 5% cement and 2.2 % emulsion.

Project 26:

Determination of Structural Layer Coefficient for Roadway Recycling Using Foamed Asphalt

Brian Marquis, Dale Peabody, Rajib Mallick and Tim Soucie

Collected Cores

Calculated Layer Coefficients

Project	Age (years)	Laboratory Resilient Modulus ¹		Backcalculated Modulus		Layer Equivalence Based on Equal Strain		Layer Coefficient ²
		MPa	ksi	MPa	ksi	BSM	ATB	
Belgrade-Rt8	>2	1243.8	180.4	999.3	144.9	1.00	0.67	0.22
Orient Cary-Rt.1	<1	2111.3	306.2	655.0	95.0	1.18	0.78	0.23
Farmington-Rt.156	<1	2453.7	355.9	1827.1	265.0	1.23	0.82	0.22
Macwahoc-Rt 2A	<1	3325.8	482.4	2505.1	363.3	1.35	0.91	0.35

RMRC Project 28:
EVALUATION OF CEMENTSTABILIZED FULL-DEPTHRECYCLED BASE
MATERIALS FOR FROST AND
EARLY TRAFFIC CONDITIONS

Heather Miller and Rebecca Crane

How do Frost and Early Traffic Affect FDR?

- Traffic loads within 1 or 2 days of placement did cause a reduction in stiffness of cement treated base.
- Cement treated base still heaved during spring thaw. Results suggest the CTB bridges soft subgrades, but will still heave with succeptible subgrades.

Design Techniques Used

Stabilization Materials Used

RMRC Current Research

www.recycledmaterials.org/Resear ch/current/currentresearch.asp

Projects Related to In-Place Recycling

- Project 46-Engineering Properties of RAP and RCA for Unbound Base Course Applications
- Project 47-Stabilization of Reclaimed Pavement Material and Road Surface Gravel with Coal Combustion Project
- Project 48-Using High Carbon Coal Fly Ashes to Stabilize Recycled Asphalt Pavement Materials
- Project 61-Characterization of Cementitiously Stabilized Layers for Use in Pavement Design and Analysis

Final Plea

Keep your data! We will need it in the future!

Jeff Melton (603) 862-2107 jeffrey.melton@unh.edu