CIR In NY State Case Study

Northeast & Mid-Atlantic States In-Place Recycling Conference -August 24-26, 2010

New York State Department of Transportation

OUTLINE

- History of use Quantity Performed
- Project Selection Recommend Practice
- Basic Design Practices / Top Course
- Specification Requirements
- Selected Projects
- NYSDOT Performed Research
- NYSDOT Future Use

HISTORY OF USE

- First Used In Early 1990's
- NYSDOT Completed Approximately 200 Jobs
- Approximately 1000 Center Line Miles
- Typically Perform 10+ Jobs Per Year

CONTRACTOR AVAILABILITY

SELECTION CRITERIA

NYSDOT COMPREHENSIVE PAVEMENT DESIGN MANUAL

- Distress Level
 - Medium-High Severity Cracking
 - Rutting
 - Drop Off
 - Raveling
 - Infrequent Heaves

SELECTION CRITERIA

Required Conditions

- 1" Thickness Below Recycled Depth
- Adequate Drainage
- Few Manholes or Other Utilities
- Less Than 4000 AADT Per Lane
- Less Than 10% Trucks
- 5 Million ESAL Loose Limit

TYPICAL CONDITIONS

HOW IT'S BID / ESTIMATED?

THREE ITEMS

- Square Yards To Be Recycled
- Additional Stone
- Liquid

ESTIMATING

- Depth of Cut (3" or 4")
- 20% Add Stone of Milled Volume To Be Recycled
- 3% Emulsion Content / 2% PG Binder

ADD STONE / GRADATION

 State Provides Core Information

Use Of Add Stone
 To Meet Binder
 Gradation

■ ½" to 1" Stone

SAMPLING

TYPICAL CORING

ALTERNATIVE - MILLING

SPECIFICATION REQUIREMENTS

Design Parameters

- 3" or 4" Nominal Option
- Typically HFMS-2
- Additive Usage
- Reclaimed Material Pass 2"
- Add Stone & Emulsion
 Based on Mass of Millings
- Add Stone 20% To Meet Gradation Requirements

Design Gradations

	Sieve	Min	Max
•	11/2	100	(E)
	1	95	100
•	1/2	70	85
•	1/4	48	68
	1/8	32	54
•	20	15	30
•	40	8	22
•	80	4	14
٠	200	2	8

UP-STATE BIRD - REDBIRD

Native Habitat

Blanket Of Nuclear Security

SPECIFICATION REQUIREMENTS

Construction

- Minimum of 45 Degrees
- Last Saturday of September
- Gradation Check
- Steel Wheel and Pneumatic Roller
- Target Density Used To Establish Roller Pattern
- Reclaim 6" When Creating Longitudinal Joint

Finish Tolerance

- Longitudinal Joint 3/16"
- 3/8" in 10' Perpendicular To The Lane
- 3/8" in 15' Parallel to Centerline
- 10 Day Cure Period
- Fog Seal

SELECTED PROJECTS

Recent Work

- ROUTE 104B OSWEGO COUNTY 2009
- ROUTE 8 WARREN
 COUNTY BRANT LAKE
 2008
- ROUTE 1390 LIVINGSTON COUNTY 2009

Work From The Past

ROUTE 104B-OSWEGO CO. 2009

- Very "GREEN" WMA Overlay
- QA Liquid Values / Turnaround Time

Ride / Tolerance / T&L

June 30th in Oswego Co.

Rte 104b

ROUTE 8 - WARREN COUNTY - BRANT LAKE 2008

- Low Traffic
- Late(r) Season
- Shade

Near Noon @ Brant Lake

Route 8 Near Brant Lake...

SHOULDER WORK - I390 REHAB

RTE I390 - LIVINGSTON CO 2009

- Shoulder In Poor Condition
- Passing Lane Shoulder
 Very Poor Material
- Originally A Mill & Fill,
 With HMA Overlay
- Converted To Cold Recycle with Chip Seal
- ½The Bid Price –
 (~\$500,000)

Rush To Put In Rumble Strips

Slurry Fix

LEAVING IT HIGH

NYSDOT RESEARCH

CHESNER ENGINEERING – STEPHEN CROSS – OKLAHOMA STATE

- Recently Completed 2007-2010
- Long History Little Change
- Trying To Determine Patterns of Success
- Move Forward With A Comprehensive Design Process

What It Turned Into

- Database of All NYSDOT Projects 1990-2007
- Evaluation of Factors Affecting The 4 Long Term
 Performance Of Cold In Place Recycled Pavements In New York
- Best Practice Guidelines
 - Mix Design
 - Specification

What Else It Turned Into

- Life Cycle Environmental Analysis For The Evaluation Of Pavement Rehabilitation Options
- How We Score Pavements
- Comparative Analysis
 - TCO
 - MF
 - Cold Recycle

What it Showed

- Comparative Analysis Comparable Performance
- PaLATE FHWA Sponsored , Cal Berkley Model
 - Economic and Environmental Highway Construction & Maintenance Activities

PaLATE

- Using a Battleship To Kill A Mosquito
- VERY COMPLEX
- Layers Of Assumptions
 - Material Production
 - Material Transportation
 - On Site Equipment

Environmental Analysis

- 1. Energy consumption in MJ,
- 2. CO2 (Carbon dioxide) emissions in kg,
- 3. Water consumption in kg,
- 4. NOx (Nitrogen oxides) emissions in kg,
- 5. PM10 (particle size less than 10 micrometer) emissions in kg,
- 6. So2 (Sulfur dioxide) emissions in kg,
- 7. CO (Carbon monoxide) emissions in kg,
- 8. Hg (Mercury) emissions in g,
- 9. Pb (Lead) emissions in g,
- 10. RCRA (Resource Conservation Recovery Act) hazardous waste generated in kg,
- 11. HTP (human toxicity potential cancerous) in g,
- 12. HTP (human toxicity potential non-cancerous) in kg.

Assumptions - Changes - Right?

- Several Adjustments
- Most Influential % of Energy Required For Asphalt
- Two Course Overlay Longer Life
- Shoulders Are Ignored

Analysis - Life Cycle Costs

- CIPR-3 and TCO are comparable life cycle cost options.
- Treatment life is the most critical parameter when comparing the CIPR and TCO options.
- When deciding between TCO and CIPR as treatment options, the deciding factor should be based on the structural requirements and functional distresses exhibited by the pavement.
- The MF options are the least cost effective of the treatments evaluated.

Analysis - Environmental Impact

- The CIPR maintenance options of CIPR-3, CIPR-4 and CIPR-3-AS, from a life cycle environmental perspective, are the best treatment options.
- The TCO maintenance option is similar to CIPR-4 if addstone is included in the mix (CIPR-4-AS).
- The MF options exhibit the highest life cycle environmental burdens, when compared to the CIPR and TCO options.

Future Use of Cold Recycling

- Long Established Track
 Record Happy Engineers
- Cost
- Expand Use To Higher Traffic Volumes – ESALS
- Optimize Mix Performance

 Without Over
 Engineering The Product

Rock Science Not Rocket Science

"It's time we face reality, my friends. ... We're not exactly rocket scientists."

EASY QUESTIONS ONLY

Tom Kane
Materials Bureau – NYSDOT
518-457-4287
tkane@dot.state.ny.us

