Crack Sealant Performance Grade Specification

Midwest Pavement Preservation Meeting
October 27, 2010

Your Destination...Our Priority
Objectives

- CS-PG Spec Background
- Provisional AASHTO Standards
- TPF-5(225) Phase II
- Mn/DOT/U Illinois Testing
- NTPEP Crack Sealant Test Sites
CS-PG Development

- Crack Sealant Consortium
- DOT/Provinces
- 6 tests
- Test Parameters
AASHTO Provisional Standards

- Apparent Viscosity
- Accelerated Aging
- Low Temp-BBR
- Tensile Strength-DTT
- Adhesion Test-DTT
- Blister Test
AASHTO Provisional Standards

- Apparent Viscosity
- Accelerated Aging
- Low Temp-BBR
- Tensile Strength-DTT
- Adhesion Test-DTT
- Blister Test
AASHTO Provisional Standards

- Apparent Viscosity
- Accelerated Aging
- Low Temp-BBR
- Tensile Strength-DTT
- Adhesion Test-DTT
- Blister Test
AASHTO Provisional Standards

- Apparent Viscosity
- Accelerated Aging
- Low Temp-BBR
- **Tensile Strength-DTT**
- Adhesion Test-DTT
- Blister Test
AASHTO Provisional Standards

- Apparent Viscosity
- Accelerated Aging
- Low Temp-BBR
- Tensile Strength-DTT
- Adhesion Test-DTT
- Blister Test
AASHTO Provisional Standards

- Apparent Viscosity
- Accelerated Aging
- Low Temp-BBBR
- Tensile Strength-DTT
- Adhesion Test-DTT
- Blister Test
Figure 31 Process for the Selection of Bituminous-Based Sealants
<table>
<thead>
<tr>
<th>Crack Sealant Performance Grade</th>
<th>SG 46</th>
<th>SG 52</th>
<th>SG 58</th>
<th>SG 64</th>
<th>SG 70</th>
<th>SG 76</th>
<th>SG 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Viscosity, SC-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Viscosity (Pa.s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>Minimum Viscosity (Pa.s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Vacuum Oven Residue (SC-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, SC-4</td>
<td>46</td>
<td>52</td>
<td>58</td>
<td>64</td>
<td>70</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>Minimum Flow Coeff. (kPa.s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Minimum Shear Thinning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Crack Sealant BBR, SC-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Stiffness (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Minimum Avg. Creep Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Crack Sealant DTT, SC-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Extendibility (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crack Sealant AT, SC-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Load (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Crack sealant surface energy is provided by manufacturer.
TPF 5 (225) Phase II

- November 9-Kick-Off
- Lab Validation
 - Round Robin Testing-P&B
 - Training
- Field Validation
 - 8 test sections in the 4 environmental regions
Phase II

- Test Site Monitoring
 - Field rating-5 times over 4 yrs
 - Collect samples for testing
 - Crack Movement- Time Temp superposition

- Fine Tune Parameters
- Quantify Cost Effectiveness
2005 NTPEP Crack Sealant Performance Testing

<table>
<thead>
<tr>
<th>ID</th>
<th>Viscosity</th>
<th>Flow Coefficient</th>
<th>Shear Thinning</th>
<th>S</th>
<th>Creep Rate</th>
<th>Expendability</th>
<th>Adhesion</th>
<th>Adhesion Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.93</td>
<td>4867</td>
<td>0.88</td>
<td>5.2</td>
<td>0.436</td>
<td>>90 NR</td>
<td>7.2%</td>
<td>20.0%</td>
</tr>
<tr>
<td>B</td>
<td>3.19</td>
<td>11346</td>
<td>0.88</td>
<td>7.2</td>
<td>0.450</td>
<td>>85 NR</td>
<td>24.3%</td>
<td>44.0%</td>
</tr>
<tr>
<td>C</td>
<td>0.94</td>
<td>4326</td>
<td>0.86</td>
<td>6.8</td>
<td>0.380</td>
<td>>85 NR</td>
<td>8.8%</td>
<td>24.3%</td>
</tr>
<tr>
<td>D</td>
<td>2.37</td>
<td>5696</td>
<td>0.77</td>
<td>53.4</td>
<td>0.380</td>
<td>>85 NR</td>
<td>23.8%</td>
<td>46.4%</td>
</tr>
<tr>
<td>E</td>
<td>1.53</td>
<td>3762</td>
<td>0.86</td>
<td>6.4</td>
<td>0.396</td>
<td>NR</td>
<td>8.5%</td>
<td>18.2%</td>
</tr>
<tr>
<td>F</td>
<td>2.20</td>
<td>5632</td>
<td>0.82</td>
<td>30.8</td>
<td>0.439</td>
<td>>85 NR</td>
<td>38.0%</td>
<td>50.4%</td>
</tr>
<tr>
<td>G</td>
<td>2.35</td>
<td>3284</td>
<td>0.83</td>
<td>36.9</td>
<td>0.310</td>
<td>>85 NR</td>
<td>20.5%</td>
<td>43.2%</td>
</tr>
<tr>
<td>H</td>
<td>2.82</td>
<td>2765</td>
<td>0.88</td>
<td>7.6</td>
<td>0.343</td>
<td>NR</td>
<td>22.8%</td>
<td>39.6%</td>
</tr>
<tr>
<td>I</td>
<td>2.88</td>
<td>9726</td>
<td>0.94</td>
<td>41.6</td>
<td>0.347</td>
<td>15-37</td>
<td>33.6%</td>
<td>50.4%</td>
</tr>
<tr>
<td>J</td>
<td>3.88</td>
<td>20942</td>
<td>0.91</td>
<td>15.6</td>
<td>0.328</td>
<td>>85 NR</td>
<td>26.6%</td>
<td>41.7%</td>
</tr>
<tr>
<td>K</td>
<td>2.35</td>
<td>7387</td>
<td>0.92</td>
<td>44.1</td>
<td>0.326</td>
<td>2.47</td>
<td>34.6%</td>
<td>43.8%</td>
</tr>
<tr>
<td>L</td>
<td>2.02</td>
<td>9446</td>
<td>0.82</td>
<td>56.3</td>
<td>0.327</td>
<td>2.36</td>
<td>27.8%</td>
<td>31.8%</td>
</tr>
<tr>
<td>CS-PG Spec</td>
<td>1-3.5</td>
<td>4000+</td>
<td>0.7+</td>
<td>25-</td>
<td>0.31+</td>
<td>By Spec</td>
<td>P_max >50 N</td>
<td>10%</td>
</tr>
</tbody>
</table>
NTPEP Crack Sealant Test Decks

- **North Carolina**
 - 2009 CS/JS
 - 2010 JS

- **Vermont**
 - 2010 CS

- **Minnesota**
 - 2003 JS
 - 2005 CS
Importance of Evaluating Sealants

Comparison of Measured vs Visual Seal Failure

Test cell

Failure, %

NTPEP Measured
Visual Estimation