In-Place Recycling in the Federal Lands Highway Program Mike Voth, FLH-FHWA

Midwestern States In-Place Recycling Conference, August 11-13, 2009

Recycling & Reclamation Methods Used

Cold In-Place Recycling
FDR pulverize
FDR with cement
FDR with foam
FDR with emulsion

Engineering America's Scenic Highways

In-Place Recycling in FLHD

U.S. Department of Transportation Federal Highway Administration Federal Lands Highway Division

Project Selection

 Federal Lands has had good success (long-term performance) with CIR/FDR

 They have proven to be a cost effective, good performing, rehabilitation methods

Structural design completed and compared with other rehabilitation alternatives.

Engineering America's Scenic Highways

Project Selection

 Let field investigation guide decision
 FLHD management and decisionmakers present few challenges to inplace recycling use.

 No cut-offs or pre-set requirements for use – it's an engineering decision

Engineering America's Scenic Highways

Candidate for In-Place Recycling

Engineering America's Scenic Highways

Field Investigation for CIR

Reconnaissance	Sampling Frequency	Purpose
Pavement Distress Survey	Project wide	-Document suitability; isolate problem spots
Pavement Layer Depths, Uniformity, Quality	Every ¼-mile	Determine: -Feasibility -Recycling Depth
Subgrade soil	Minimum 1 per mile	-Structural design -Support for equipment

Field Investigation for CIR

Reconnaissance	Sampling Frequency	Purpose
FWD Survey (not completed on all projects)	300 feet (maximum)	-Determine subgrade modulus -Delineate soft spots
Bulk Pavement Sampling*	As needed to represent differing project conditions	-Determine mix quality -Estimate application rates

*Completed on projects with marginal conditions and there is a concern about being able to obtain a quality product

CIR Project Selection

- Subgrade and base must have the ability to support the recycling train.
- Adequate Geometrics: minimal steep grades and sharp curves, minimal widening.
 - Consider economy of scale -project size > 5 mi.

Engineering America's Scenic Highways

Project Selection- Example

PAVEMENT REHBILITATION ALTERNATIVES (long-term, structural improvements)

Treatment Type i Method	Life Expectancy	Pros	Cons	Cost/Mile (\$1000s)
•8" Full-depth reclamation (FDR) – stabilized •2" HACP	20 - 30 years	Stabilization reduces risk for pumping (and potential for subexcavation overrun) Reuses/recycles materials Efficient/smaller "carbon footprint" Favorable life-cycle costs Minimal dust	 Contractor availability / mobilization Slight grade raise More intensive inspection during construction 	\$600 k
 4" Cold in-place recycling (CIPR) 3" HACP 	20 – 30 years	 History of long-term performance Reuses/recycles materials Efficient/smaller "carbon footprint" Favorable life-cycle costs No dust 	 Contractor availability / mobilization Treating some base materials Not suitable for pullouts & parking areas Grade raise Subgrade/base may not have sufficient strength to support CIPR train 	\$600 k
•Mill 4" of existing material •Recondition base •4" HACP	15 – 20 years*	Zero grade raise Conventional construction / ample contractor availability	 No in-place recycling Requires 3 separate operations (mill, recondition, pave) Lower structural value 	\$650 k

Why complete a design?

 Fairly compare rehabilitation alternatives & additives Programmatic approach is not practical when you work in all 50 states (much variability)

Justify chosen method to clientagency

partment of Transportation **Highway Administratio** ands Highway Division

Engineering America's Scenic Highways

FLHD Structural Guidelines

FDR Method	Minimum Thickness of Riding Surface	Typical Structural Coefficient
Mechanical (pulverize)	2"HMA	0.10 - 0.12
Bituminous	Surface Treatment or Structural HMA	0.20 - 0.28
Cement	Surface Treatment or Structural HMA	0.15 - 0.20

FLHD Structural Guidelines

	Minimum Thickness of Riding Surface	Typical Structural Coefficient
CIR	Surface Treatment or Structural HMA	0.28

See Chapter 11 in the FLH Project Development and Design Manual for further details. Web link: www.wfl.fhwa.dot.gov/design/manual/

CIR Mix Design

- CFLHD performs a mix design and provides initial application rates -Hveem method (AASHTO Task Force 38)
- WFLHD determines application rate during test strip
- Future: Use Superpave Gyratory Compactor? Project underway designed with SGC.

Engineering America's Scenic Highways

Performance

 Performance has exceeded expectations

 Nearly all of FLHD's CIR projects are still in-service

A couple case studies follow...

Engineering America's Scenic Highways

FLHD's first CIR Project

Location: Rocky Mountain N.P.
Year: 1982

Typical Structural Section

- 4 inches CIPR
- 2 inches HMA

CIR Contractor: Valentine Surfacing

Engineering America's Scenic Highways

FLHD's first CIR Project

 Recycling agent: Rejuvenator (Reclamite)

Application Rate: 0.9 to 1.2 percent
 Cost Effectiveness

About 40% savings from the alternative to place a 1.5-inch leveling course
 Elevation: 9,500 to 12,000 feet

Engineering America's Scenic Highways

Rocky Mountain N.P. CIR - 1982

Rocky Mountain N.P. CIR - 1982

Rocky Mountain N.P. CIR - 1982

Rocky Mountain N.P. project ...

...after 26 years!

Rocky Mountain N.P. project...

... after 26 years!

Rocky Mountain N.P. Project - 2007

- Location: Ice House Road (Eldorado National Forest)
- Year: 1988
- Typical Structural Section
 - 4-5 inches CIPR
 - 2 inches HMA

CIPR Contractor: Valentine Surfacing

Engineering America's Scenic Highways

Recycling agent: HFMS-2
Project length: 13 miles
Traffic: 1000 vpd (1988) with heavy logging trucks

Engineering America's Scenic Highways

20 year & counting!

After 20 years of performance...

Twin Lakes Rd - California

CIR 15 years and counting

HFMS-2s

Grand Canyon – Center Rd

CIR 15 years and counting

Mendocino Pass - California

CIR 12 years and counting

HFMS-2s

6/05/2008

Colorado State Hwy 145 (Dolores to Rico)

CIR 10 years and counting

HFMS-2sP

Big Bend National Park - Texas

FDR and double chip seal

Lake Mead N.R.A. - Nevada

FDR with 6' of widening

Zion National Park - Utah

FDR with foamed asphalt

Questions?

Engineering America's Scenic Highways