Evaluation Methods for Preservation of Bridge Decks

Brian Pailes and J. Chris Ball

Vector Corrosion Services

Tampa, FL

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Preservation challenges for Bridge Decks

- Corrosion is the number one issue – Deicing chemicals
- Corrosion Reaction four components

NATIONAL BR

- Anode rust
- Cathode protected
- Electrolyte concrete
- Electronic path steel

How do we find the deterioration?

- Visual inspection
 - What is damaged today?
- Cores
 - Localized assessment of concrete materials
- Nondestructive methods
 - Global assessment of the future condition

Typical Concrete Coring

- Compressive strength
 - ASTM C₄₃ Proper collection of the cores
 - ASTM C₃₉ Compressive strength test
- Chloride concentration
- Carbonation depth
- Petrographic analysis

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Chloride Concentration

- Typically sampled in 1/2" increments to depth of reinforcement
- ASTM C1152 Acid Soluble
- ASTM C1218 Water Soluble
- Generally accepted chloride threshold
 - 350 ppm of concrete
 - ~1.5 lbs per cubic yard of concrete

Deck Joint

 Location and condition of deck joints have a profound affect on substructure elements

Carbonation Depth

- Carbon dioxide permeates into concrete
- Reduces pH of concrete
 - CO2 reacts with free lime, Ca(OH) 2, resulting in CaCO3 and H2O
- Reduced pH de-passivates steel
- Often seen when
 - Concrete permeability is high
 - Industrial sites
 - Very old structures carbonation is a result of time and exposure

Petrography

- ASTM C856
- Identify chemical characteristics of concrete
 - Air entrainment
 - Supplemental cementitious materials
 - Reactive aggregate

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Peach St Bridge

Freeze thaw damage lead to major deterioration and extensive corrosion activity

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Nondestructive Methods

- Visual inspection
- Chain drag
- Ground penetrating radar
- Corrosion potential
- Impact echo/pulse velocity

Visual Inspection

- Identify areas of visual damage
 - Rust staining
 - Cracking
 - Spalls
 - Exposed steel
 - Water infiltration
 - Efflorescence
- Note exposure conditions and other observations

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Chain Drag/Hammer Sounding

- Identifies delaminations
 - Late stage, large, near surface delaminations

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Ground Penetrating Radar

- Electromagnetic evaluation of concrete
 - Reinforcement layout
 - Location of embedded metals
 - Cover-depth
 - Qualitative condition of reinforced concrete
 - Chlorides, moisture, and concrete deterioration attenuate GPR signal

Cover-depth

- Most important factor in the service life of a bridge
 - The best quality concrete does no good if it isn't sufficiently over the reinforcement

NATIONAL BRIDGE

$$C_{(x,t)} = C_o \left[1 - erf \frac{x}{2\sqrt{D_c t}} \right]^2$$
$$t = \frac{1}{D_c} \left[\frac{x}{2 \times inverf \left(1 - \frac{C_{x,t}}{C_o}\right)} \right]^2$$
$$t = \left(\frac{d}{A}\right)^2$$

Service Life Analysis

- Cover-depth and chloride concentration are critical inputs regarding service life analysis
 - Calculate diffusion coefficient
- How much of the steel has reached chloride threshold?
- How will that increase over time?

Cracking

- Cracking in the concrete provides a direct pathway to reinforcement for contaminates
- Many causes of concrete cracking
 - Concrete shrinkage
 - Mechanical stress due to overloading or improper concrete strength, under reinforced
 - ASR
 - Freeze thaw damage

GPR Amplitude Analysis

- Is not a delamination survey
 - Amplitudes can be affected by delaminations but also
 - Variations in moisture content
 - Chloride exposure
 - Cracking
 - Cover-depth (corrected for)

2222

GPR vs Chain Drag

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Corrosion Potential (Half-Cell)

- Measures the potential difference between the steel reinforcement and a reference electrode to identify the probably of active corrosion
 - ASTM C876

Corrosion Potential Survey

• Corrosion survey of a bridge in Washington DC

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Progression of Corrosion

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Epoxy Coated Rebar

- In most cases isolated reinforcement
- Measuring the concrete resistivity can give an indication as to the corrosive environment provided around the steel.
 - Can provide similar information as corrosion potential in a chloride exposure environment

Resistivity (kOhm-cm)

Corrosion Potential vs Resistivity

Impact Echo

- Identify thickness of a slab
- Defects will affect the apparent thickness

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

IE Deck Testing

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

CONTOUR PLOT OF RESULTS

Post Tension Grout Inspection with Impact Echo

- Identify issues like soft grout
- Water or air voids

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Rogers Overpass

- Pedestrian overpass in Victoria British Columbia
 - 4 PT tendons
- Construction inspector noted that contractor may have made a mistake during PT grouting

N PARTNERSHIP CONFERENCE 2018

Pulse Velocity

 Velocity of a shear wave is proportional to the compressive strength of the concrete

Normal CompressionalLower Compressional Velocityand Shear Waveand Lower or Loss of Shear Velocity ValuesVelocity Values

Identification of deteriorated concrete

NATIONAL BRIDGE PRESERVATIO

Thank You

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018