

Steel Bridge Crack Repair

Topics

- Introduction and purpose
- Problem of cracks in steel bridges
- Current repair methods
- Cold Expansion/Enhanced Drill Stop
- Survey
- Conclusions

Introduction and Purpose

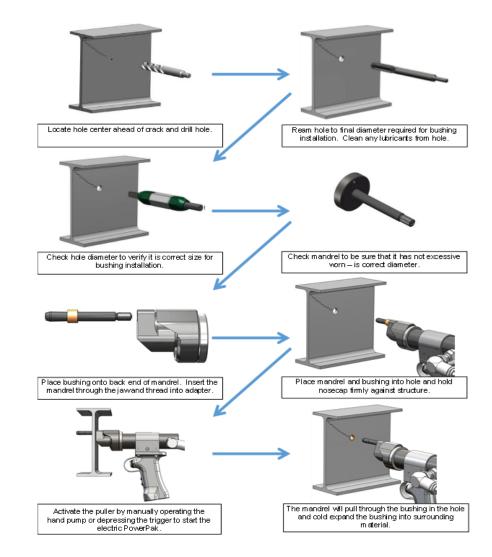
- Time wasting repairs.
- Need to find a better way.
- Good results
- Checked w/FTI
- Only 13 states purchased the tool
- Conducted survey through TSP2

Problem of Cracks in Steel Bridges

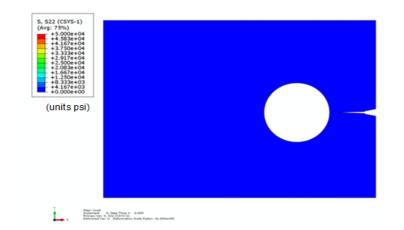
- Repair for fatigue cracks in steel has been:
 - Find the end of the crack.
 - Small crack grind it out
 - Longer cracks -Drill a crack arrest hole
 - Polish the hole
 - Chase the crack if it extends beyond the CAH
 - Try a bolt to put some compression in the steel
 - After next inspection repeat and sandwich the area in steel plates

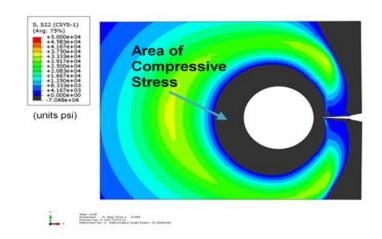
Current Repair Methods

- Satsop River Bridge 12/51S
- End of crack, crack arrest hole drilled 2012
- Note crack propagation 2015, 2016, 2017

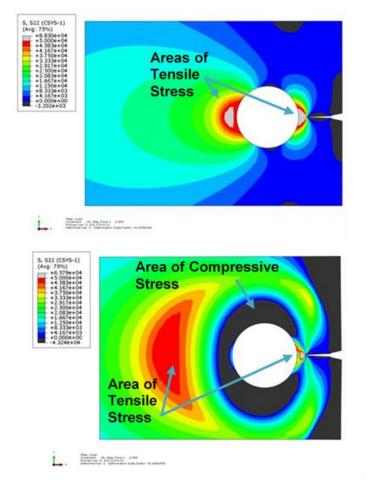


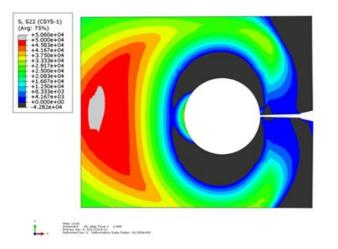
- Aviation derived technology introducing zone of residual compressive stress
- Zone "shields" the crack from cyclic loading
- Currently used by 13 state DoTs and in several other industries

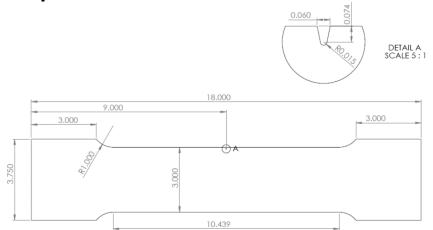




- Locate crack tip
- Drill hole 5/16 in front of crack (leaves 1/16th ligament)
- Confirm hole size and mandrel wear allowance
- Install bushing on mandrel
- Install bushing and cold expand drill stop hole
- Monitor




- Finite Element Analysis
- Model assumptions
 - A36 steel
 - Baseline with no load
 - CAH and Cx enhanced repair



- FEA Under Load
 - 20.5 ksi stress
 - Crack tip in front of hole
 - Crack tip at hole

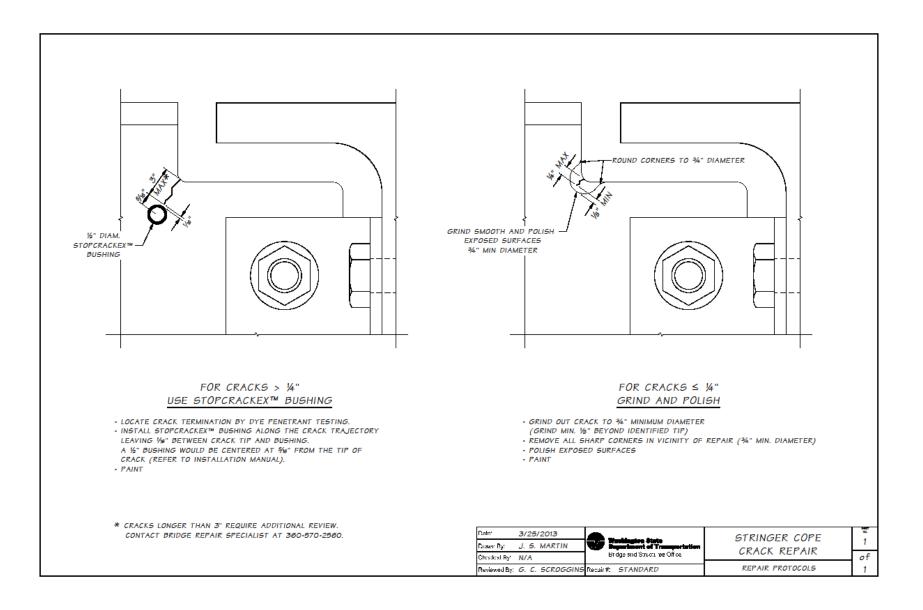
- Independent testing conducted by Southern Utah Engineering
- 7 Samples pre-cracked
- 3 Repaired with traditional crack repair and 4 with Cx enhanced repair

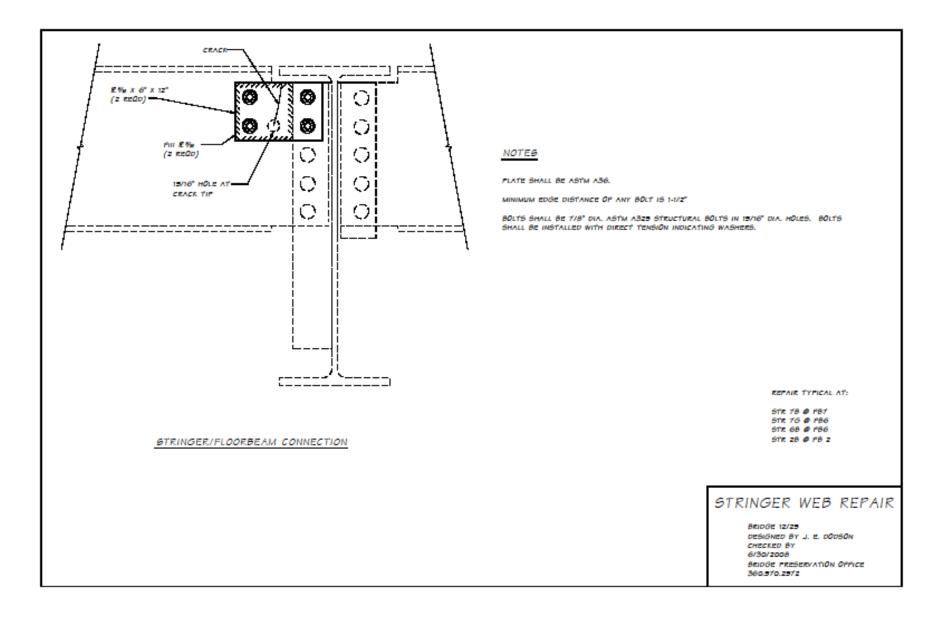
- Repaired specimens cycled at 20.5 ksi
- Test stopped upon visual indication of crack propagation or 4,000,000 cycles
- Specimen 7 allowed to run to 20,000,000 cycles; stopped with no propagation

SPECIMEN	RETROFIT METHOD	CRACK LENGTH (inches)	MAX NET STRESS (ksi)	R	CYCLES TO BREAK HOLE	CYCLES TO BECOME A THROUGH CRACK	CYCLES TO REINITIATE	CRACK LENGTH (inches)
1	StopCrackEX [™]	0.29	20.5	0.05	580,000	1,700,000	4,000,000	No Crack
2	StopCrackEX [™]	0.285	20.5	0.05	250,200	300,000	4,000,000	No Crack
3	САН	0.298	20.5	0.05	15,600	17,500	230,000	0.145
4	САН	0.264	20.5	0.05	5,868	7,000	440,000	0.149
5	StopCrackEX [™]	0.265	20.5	0.05	700,000	4,000,000	4,000,000	No Crack
6	САН	0.265	20.5	0.05	4,165	6,000	250,000	0.14
7	StopCrackEX [™]	0.262	20.5	0.05	210,000	3,700,000	20,000,000	No Crack

Manahawkin Bay Bridge, NJDOT (Oct 2011)

Lincoln Tunnel Interchange, NJTA (Mar 2012)


Bridge over Delaware River, NYSDOT (Apr 2012)


Satsop River Bridge, WADOT (Oct 2017)

Survey

- 18 replies from 17 states
- 14 states; Grind out small cracks, Crack arrest holes for longer cracks, Plate the crack
- Size of crack arrest hole varied from ½ inch to 2 inches.
- 1 State: hole encompasses all the crack or cracks; then plate the hole.
- Results were mixed. For several states no propagation of the crack. For others some of the cracks continued in 2 to 4 years.
- 5 states used the crack arrest tool. 3 in process of purchasing
- No reports of the crack going past the cold expansion bushing

Conclusions

- The states that have used the tool have found it effective in stopping fatigue cracks.
- No state that answered the survey reported that they had a crack move past the bushing.
- There is a large cost savings in not having to redo a repair.