Repair and Load Rating Verification by Detecting Structural Damage

Presented by Carlos Gamez, PhD Mechanical Engineer at Metal Fatigue Solutions, Inc.

Presented at 2018 National Bridge Preservation Partnership Conference, Orlando, Florida, March 20th 2018

Outline

- Background
 - Fatigue Cracking in steel bridges
- The Electrochemical Fatigue Sensor (EFS) Technology
 - How EFS works
- The EFS in the field
 - EFS bridge instrumentation
 - Data collection on load tested bridges
 - Testing and results

Background

- The U.S. has 614,387 bridges
 - 40% are 50+ years old
- Almost 10% were structurally deficient in 2016
- Current structural rehabilitation costs exceeds \$100 Billion
- Posting bridges help enable bridge integrity
 - Posted bridges load rating changes with time

Monitoring Cracks on Steel Bridges

- Increased truck load limits leads to rapid accumulation of loading cycles
- Studies show:
 - >90% of cracks are missed with visual inspection
 - >80% of areas called out as cracks are false positives

The Electrochemical Fatigue Sensor (EFS) Technology

- EFS is an NDT method
 - Determines if a fatigue crack is actively growing
- Detects microplasticity
- Immediately verifies efficacy of repairs/retrofits

How the EFS works

- Similar to a medical EKG
- Uses an electrolyte to create an electrical circuit in the structure
 - Apply constant voltage, read back current
- Changes in current from the sensor \rightarrow Crack growth

EFS System

4 Major components:

- EFS Sensors (short term or long term)
- Data collection hardware
- Data analyzer (software)
- Wireless communication (Wi-Fi or LTE)

EFS Components

- Non-Conductive casing
- Liquid electrolyte
- Stainless steel mesh

Data Collection Hardware

- Precisely controls the EFS sensor array voltage
- Measures the current flow for the two sensors
- Stores all the data on an SD card.
 Data is retrieved/stream wirelessly

Data Analyzer (Software)

- Frequency content and magnitude differences indicate crack condition
- Energy Ratio (ER) is crack growth indicator
 - No growth<1.5
 - 1.5<Potential Growth<1.9</p>
 - 1.9<Active crack growth

The EFS in the Field – ADOT, I-15 River Bridges

- EFS was installed in 4 different structures
- 19 locations were monitored with EFS
 - 15 locations had visible cracks
 - 4 retrofit locations

EFS Installation Example

-FACE

- Short term sensor
- Longitudinal crack in the girder web near the top flange

EFS Data Collection on Load Tested Bridges

- Two load test
- Ambient traffic
- Roll test
- Roll test parameters:
- Gross vehicle weight was 63,000 lb
- 5 MPH and 65 MPH

Testing Results for All Bridges

- From the 15 visible cracks locations:
 - 4 were actively growing
 - 5 showed potential to grow
 - 6 were not actively growing

- 1 was not working (active crack growth)
- 2 showed precursors to crack growth
- 1 was working (No active crack growth)

Note: Roll test at low speed (less than 5 MPH) did not provide usable data

Sensor Data

Conclusions

- The EFS is an NDT technology
 - Identifies the crack activity in real time
- Needs dynamic loading for accurate reading
- Verifies repairs and retrofits prior to changing load limits
- By measuring direct damage occurring on the structures, more accurate load ratings are achieved

Questions?