

Protective Coatings for Concrete Bridge Components

Bobby Meade – Greenman Pedersen Inc. Derrick Castle – The Sherwin-Williams Co. Sudhir Palle – University of Kentucky Theodore Hopwood II – University of Kentucky

Content from Three Research Studies

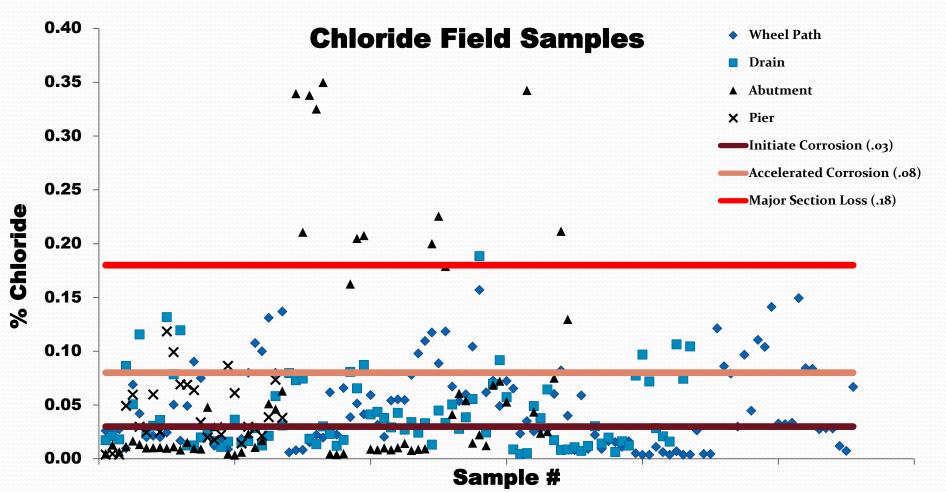
KTC-14-3/SPR406-10-1F Evaluation of Deterioration of Structural Concrete Due to Chloride Intrusion and Other Damaging Mechanisms

• KTC-14-4/FRT194, SPR388-12-1F. Sealants, Treatments and Deicing Salt Practices to Limit Bridge Deck Corrosion and Experimental Deck Sealants and Pier Cap Coating on Interstate 471

KTC-16-03/SPR12-433-1F
Thin Film Concrete Coatings

The Problem

- > 610,000 bridges in the FHWA inventory
- Three primary components: decks, substructures, and superstructures > 1,830,000 components
- ~ 1,600,000 of those components are constructed of reinforced concrete
- Steel reinforced concrete often has corrosion issues


Action levels for chloride levels of concrete that result in steel corrosion

- 0.03 percent chloride to weight of concrete = initiation of corrosion
- 0.08 percent chloride to weight of concrete = accelerated corrosion
- 0.18 percent chloride to weight of concrete = major section loss of steel

KTC-14-3/SPR406-10-1F Evaluation of Deterioration of Structural Concrete Due to Chloride Intrusion and Other Damaging Mechanisms

- 2002 chloride content below action level in KYTC bridge decks
- Increasing concrete deterioration observed
- 2011 evaluated 24 KYTC bridges
 - Decks, abutments, and pier caps

Chloride content of KYTC bridge components in 2011

Changes in Chloride Content in KYTC Bridge Components

- 2002 -bridge decks at the upper mat level were less than 0.01%
- 2011 -bridge decks at the upper mat level were often 0.20% - 0.30%
- 2011 -pier caps and abutment seats were often 0.30% to 0.40% range

Sample Location	<0.03	>0.03 but <0.08	>0.08 but <0.18	>0.18
Wheel Path	46.8%	33.3%	19.8 %	o%
Drain	50.6%	36.8%	11.5 %	1.1%
Abutment	56.5%	18.8%	4.3%	20.3%
Pier	48.1%	40.7%	11.1%	o%

Result of Increased Chloride Contamination

KTC-14-4/FRT194, SPR388-12-1F. Sealants, Treatments and Deicing Salt Practices to Limit Bridge Deck Corrosion and Experimental Deck Sealants and Pier Cap Coating on Interstate 471

- 24 penetrating sealers evaluated
 - AASHTO T-259, "Resistance of Concrete to Chloride Ion Penetration,"
- Best performers (~1/3) reduced chloride penetration by ~75%
- Conclusion better protection needed for nondriving surfaces

Research Approach

- Identify potential thin film coatings
- Minimal system application time requirements
- User friendly
- Evaluate in laboratory and field

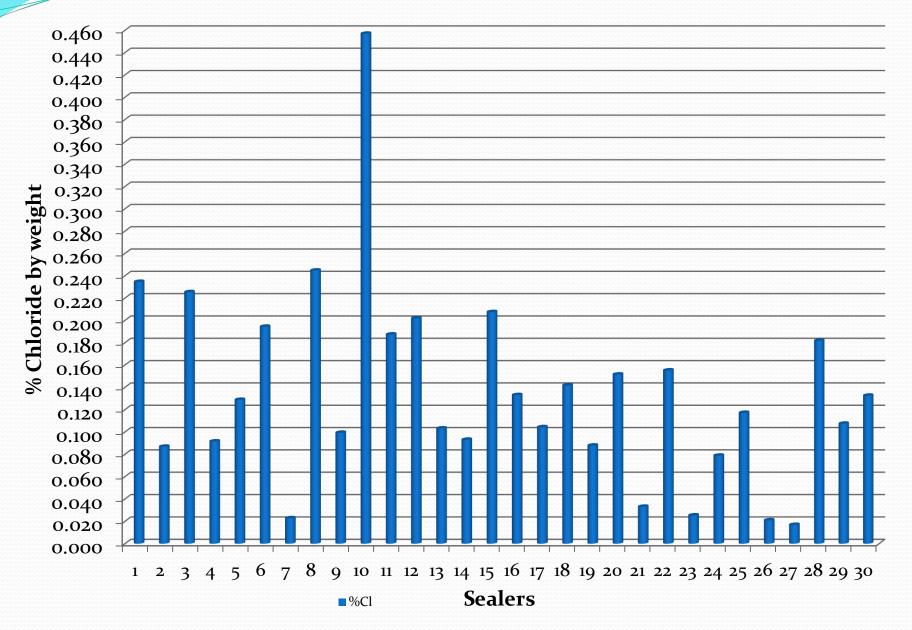
Performance Criteria Evaluated

- Adhesion
- Resistance to chloride transmission
- Color stability
- Gloss retention

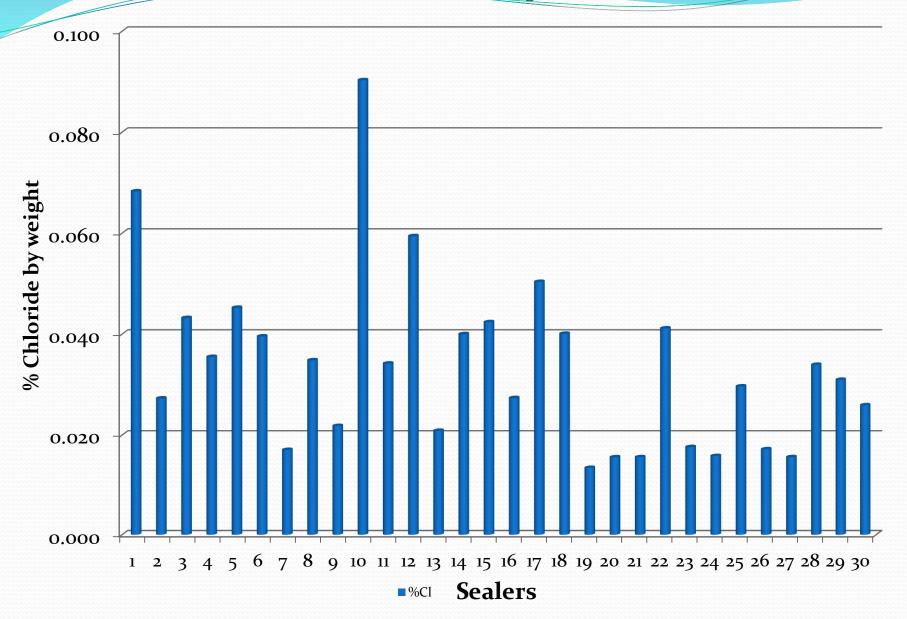
Types of thin film concrete coatings tested

System	Description
1	Two component, high solids, high build, polyamide epoxy, applied in one coat
	Two component, polyester modified, aliphatic, acrylic polyurethane, applied in one coat
2	Two component, high solids epoxy, applied in one coat.
	Single component, water-born acrylic, applied in one coat.
3	Single component, water-born acrylic sealer, applied in one coat.
	Single component, elastomeric high build acrylic, applied in one coat.
4	Single component, waterborne blend of silanes, siloxanes and acrylics, applied in one coat
	Single component, waterborne, silicon resin coating, applied in two coats
5	Methyl methacrylate-ethyl acrylate copolymer sealer, applied in two coats
6	Two component, cycloaliphatic amine epoxy mastic, applied in one coat.
	Two component, aliphatic acrylic-polyester polyurethane, applied in one coat.
7	Single component, waterborne acrylic, applied in one coat.
	Single component, modified acrylic terpolymer, applied in one coat.
8	Two component castor oil/gypsum coating, applied in one coat.

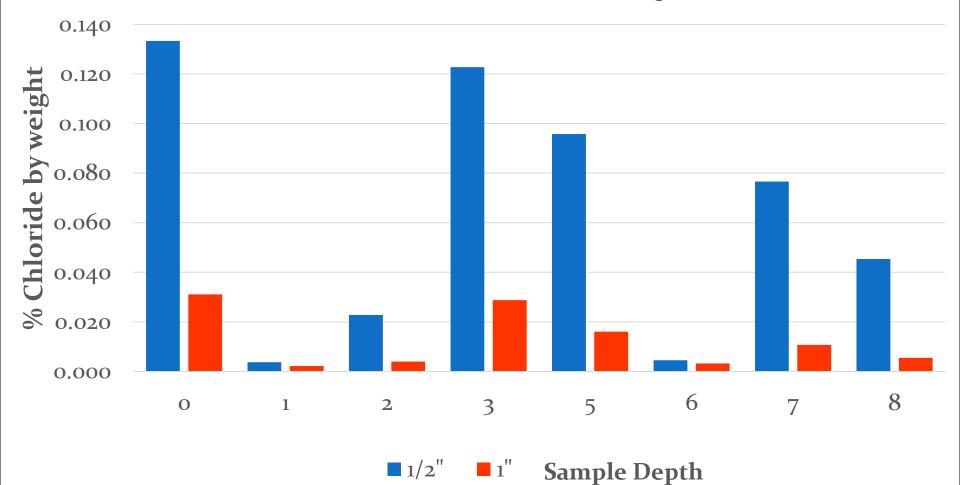
Coating Application

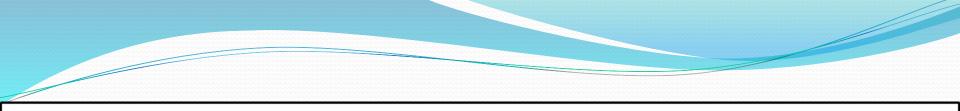

Coating Adhesion - Field

System	6 Month	Failure Mode	
	Psi		
1	493	100% Cohesive Concrete	
2	1452	100% Cohesive Concrete	
3	549	100% Cohesive Coating	
5	1128	90% Adhesive Concrete/Coating 10% Cohesive Concrete	
6	1635	100% Cohesive Coating	
7	551	90% Adhesive Concrete/Coating 10% Cohesive Concrete	
8	519	100% Cohesive Coating	

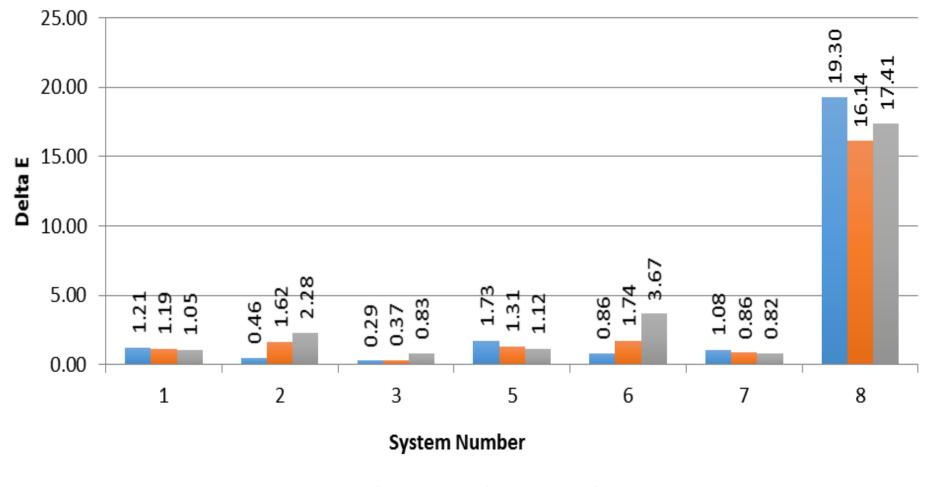

Coating Adhesion - Laboratory

System	Pre- exposure	1,000 hr exposure	2,000 hr exposure	3,000 hr exposure
	Psi	Psi	Psi	Psi
1	738	798	811	1005
2	1029	915	1120	860
3	288	640	707	636
5	798	697	746	810
6	1150	723	858	754
7	505	625	758	767
8	283	255	230	619

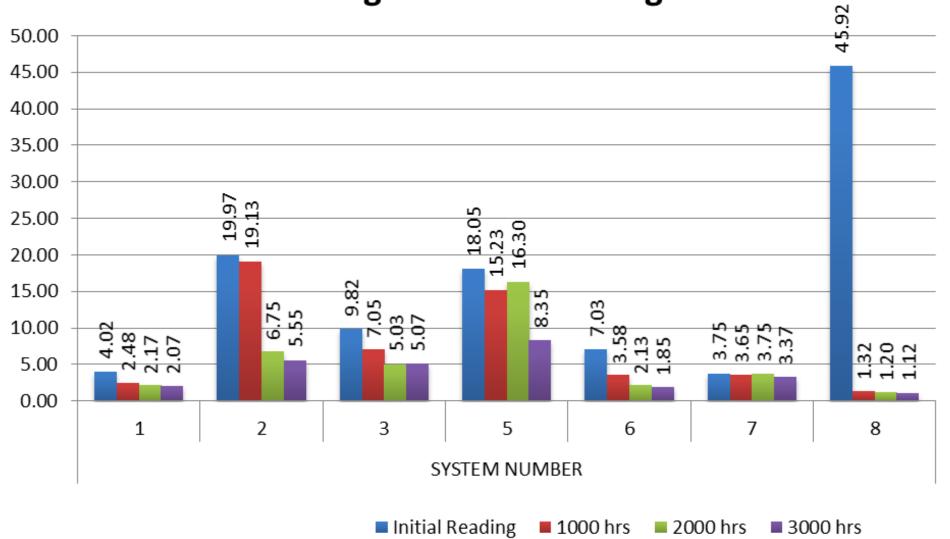

% Cl at 1/2 Inch Depth

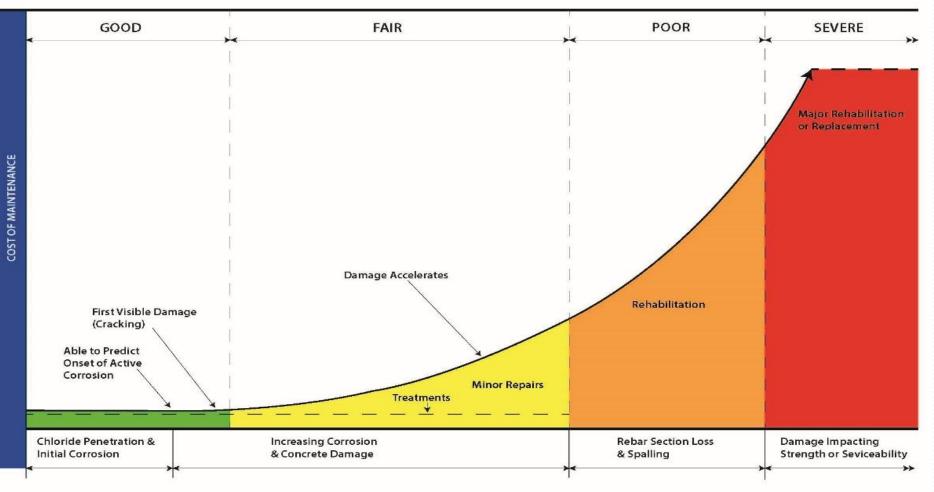


% Cl at 1" Depth



% Chloride - Thin Film Coatings


Delta E


■ 1000 hrs ■ 2000 hrs ■ 3000 hrs

60 degree Gloss Readings

NBI CONDITION RATINGS

Thin Film Coatings applied in 2004

Conclusions From Thin Film Concrete Coating

- Adhesion of coatings and the ability to resist chloride penetration are two characteristics very important for concrete coating performance.
- Systems 1, 2 and 6 perform better in these characteristics than other systems tested.
- Each of these are two-coat systems with epoxy primers. Two systems have urethane top coats and the third has an acrylic top coat.

Thank You

Contact information for authors

- Bobby.meade@uky.edu
- Derrick.Castle@Sherwin.com
- Sudhir.palle@uky.edu
- Ted.hopwood@uky.edu