QPL Complexity Vs Product Innovation

Lorella Angelini, Civil Engineer Angelini Consulting Services, LLC

Starting a Conversation

- 1. "Innovation Survey" results
- 2. Measurement of the complexity for QPL/APL DOT product approval
- 3. What complexity means for the bridge preservation industry
- 4. Potential alternatives to current status quo

2014 Innovation Survey by FHWA BPETG

Phoscrete Corporation
RJ Watson
RPM - Alteco Polymers
Sika
Simpson Strong-tie
Termarust Technologies
Transpo Industries
Unitex - Dayton Superior
Vector Corrosion Technologies
Wasser Corporation
Watson Bowman Acme
Willamette Valley Company

25 Manufacturers participated in the Innovation Survey that was conducted in 2014 by the FHWA Bridge Preservation Expert Task Force Group.

Goal of the Survey: "To understand challenges faced by product manufacturers in developing and launching new, innovative products for bridge preservation".

Number of Targeted States

80 % (68 %+ 12%) of Manufacturers target less than one-third of US States when launching a new product.

None target the entire US market with a new product.

Limited expectations for sales by Manufacturers

IATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

PRACTICES WE CAN NOT AFFORD TO DEFER

Manufacturers' Limited Expectations

- Manufacturers may limit R&D investments in product innovation for bridge preservation
- Manufacturers tend to release to the market products they already have
- Manufacturers tend to choose the most lucrative States or regional areas
- Many States, especially the small ones, may not be exposed to the use of innovative products

Why "Limited Expectations"?

Complexity

Complexity of DOT Product Approval in the 50 US States

Measurement of QPL/APL test requirements for DOT approval of an ordinary product: the "*Fast Set Concrete Repair Patch"*.

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

The Fast Set Concrete Repair Patch

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

Alabama DOT	Patching Material for Portland Cement Concrete	Nebraska DOT	Construction Products - Concrete - Pavement and Structural
Alaska DOT	Joint and Patching Materials for Concrete		Patching Materials – Horizontal Placements
Arizona DOT	Portland Cement Concrete Pavement (PCCP) Patching – Rapid Setting Patch	Nevada DOT	Fast Setting Concrete Products - Non Structural - Spec 609.02.01a
	Material	New Hampshire DOT	Rapid Hardening Patching Material
Arkansas DOT	Portland Cement Concrete Pavement Patching	New Jersey DOT	Quick-Setting Patch Materials Type 1
Caltrans	Fast-Setting Concrete	New York DOT	Rapid Hardening Concrete Repair Material (Normal Weather)
Colorado DOT	Concrete\Repair/Patching - Rapid Set Horizontal	New Mexico DOT	Concrete Structure Repair - Enriched Mortar
Connecticut		North Carolina DOT	Repair Materials: Concrete
DOT	Partial Depth Patch	Ohio DOT	Quick Set Concrete Mortar
Delaware DOT	Patching PCC Pavement, High Early Strength	Oklahoma DOT	Portland Cement Concrete Patching Material
Elorida DOT	Materials for Repair of Predominately Horizontal Surfaces - 930-4.2.2 Very	Oregon DOT	PCC Repair, Very Rapid Setting
	Rapid Hardening	Pennsvlvania DOT	Rapid Set Concrete Patching Materials
Georgia DOT	Rapid Setting Patching Material	Rhode Island DOT	Patching Mortar
Idaho DOT	Rapid-setting, Concrete Patching Material	South Carolina DOT	Rapid Patch Material for Concrete Pavement
Illinois DOT	Packaged, Dry, Rapid Hardening Cementitious Materials for Concrete	Sounth Dakota DOT	Concrete Patch Material
	Repairs" R3 Mortars	Tennessee DOT	Rapid Set Cementitious Patching Materials
Indiana DOT	Rapid Setting Patch Materials	Texas DOT	Concrete Repair Materials - Ultra-Rapid Repair Materials
Iowa DOT	Patch Material - Rapid Set Concrete	Utah DOT	Structural Pothole Patching
Kansas DOT	Rapid-Set Concrete Patching Material	Vermont DOT	Rapid Setting Concrete Repair Material
Kentucky DOT	"Very Rapid" Hardening Repair Patch	Virginia DOT	Packaged Materials to be Used in Concrete Repairs
Louisiana DOT	Rapid Setting Patching Material for Concrete	Washington DOT	Bridge Deck Repair Material
Massachusetts	Danid Cat Congress Datab Mataviale (Havizantal Fast Cat)	West Virginia DOT	Concrete Renair Materials
DOT	Rapid Set Concrete Patch Materials (Honzontal Past Set)	Wisconsin DOT	Ranid Set Concrete Patch Materials
Maine DOT	Fast Setting Concrete Patching Materials	Wyoming DOT	Horizontal Renair Material
Maryland DOT	Rapid Hardening Cement (horizontal repairs)	Wyonning DOT	
Michigan DOT	Pre-packaged Hydraulic Fast Set Mortar		
Minnesota DOT	Rapid Hardening Materials for Repairs		40 States: UPL/APL
Mississippi DOT	Rapid Set Concrete Patching Compounds.		7 States (yellow): Standard Specifications 3 States: No Category/Spec.
Missouri DOT	Rapid Set Concrete JSP-02-10		

7 Most Popular Tests

Spec.	Description	N. of Agencies
ASTM C109	Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Cube Specimens)	35
ASTM C157	Length Change of Hardened Hydraulic-Cement Mortar and Concrete	35
ASTM C882	Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear	32
ASTM C143	Slump of Hydraulic-Cement Concrete	23
ASTM C230	Flow Table for Use in Tests of Hydraulic Cement	23
ASTM C 928	Packaged, Dry, Rapid-Hardening Cementitious Materials for Concrete Repairs	22
ASTM C666	Resistance of Concrete to Rapid Freezing and Thawing (Proc. A or B or both)	17

7 Tests are Required by >15 DOT Agencies

ASTM C928 includes: C109, C143, C157, C230, C882 – ASTM C666 counts as 2 Tests

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

4 Additional Popular Tests + NTPEP

Spec.	Description	N. of Agencies
ASTM C ₃₉	Compressive Strength of Cylindrical Concrete Specimens	9
ASTM C266	Time of Setting of Hydraulic-Cement Paste by Gillmore Needles	7
AASHTO T260	Chloride Ion in Concrete	6
ASTM C531	Linear Shrinkage and Coefficient of Thermal Expansion	5
NTPEP	Rapid Set Concrete Patch Materials (RSCP)	15

4 Tests are Required by >5 DOT Agencies

NTPEP is requested by 15 DOT Agencies.

In no case NTPEP is the sole condition for approval. It is considered as an additional documentation.

11 Marginal Tests

Spec.	Description	N. Agencies
ASTM C403	Time of Setting of Concrete Mixtures by Penetration Resistance	4
ASTM C1202	Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration	4
ASTM C78	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	3
ASTM C1090	Changes in Height of Cylindrical Specimens of Hydraulic-Cement Grout	3
AASHTO T260	Chloride Permeability	2
ASTM C191	Time of Setting of Hydraulic Cement by Vicat Needle	2
ASTM C469	Modulus of Elasticity in Compression	2
ASTM C596	Drying Shrinkage of Mortar Containing Hydraulic Cement	2
ASTM C672	Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals	2
ASTM C1152	Acid-Soluble Chloride Ion Content in Mortar and Concrete	2
ASTM C1218	Water Soluble Chloride Ion Content in Mortar and Concrete	2

7 Very Marginal Tests

Spec.	Description	N. Agencies
AASHTO T105-15.1	Sulphate Content	1
ASTM C496	Splitting Tensile Strength of Cylindrical Concrete Specimens	1
ASTM C642	Density, Absorption, and Voids in Hardened Concrete	1
ASTM C807	Time of Setting of Hydraulic Cement Mortar by Modified Vicat Needle	1
ASTM C1042	Bond Strength of Latex Systems Used With Concrete By Slant Shear	1
ASTM C1583	Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method)	1
ASTM C127	Relative Density (Specific Gravity) and Absorption of Coarse Aggregate Modified	1

7+4+11+7=28 Tests

This does not take into consideration the modifications

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

Test Modifications for ASTM C666

Michigan DOT	12 freeze-thaw cycles while ponded with fresh water. 24 freeze-thaw cycles while ponded with a <u>3% solution of NaCl</u> 12 freeze-thaw cycles while ponded with fresh water
NYSDOT	Immediately after weighing the specimens are replaced in the original receptacles in the 10% NaCl solution, and placed in the chamber maintained at a temperature of -10 f 5°1. The receptacles remain in the chamber until the brine solution is completely and solidly frozen and the internal temperature of the specimen reaches -10 f 5°1.
Vermont DOT	AASHTO T161 using Procedure A (Modified) for use of a 3% Sodium Chloride solution.
PennDOT	Resistance of 50 mm x 50 mm (2" x 2") cube specimens of mortar to alternate freezing and thawing while immersed in a brine of 10% by mass Calcium Chloride in water
Virginia DOT & Maryland DOT	Loss after 25 cycles of freezing and thawing in 10% Calcium Chloride solution

18 Test Modifications

Spec	N. Modifications	Spec	N. Modifications
ASTM C666	5	AASHTO T260 Chloride Permeability	1
ASTM C882	3	ASTM C143	1
ASTM C109	2	ASTM C531	1
ASTM 157	2	ASTM C672	1
		ASTM C1202	1
		ASTM C1218	1

18 modifications are requested (19 if C127 is included) Number of tests rises from 28 to 46

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

10 Custom DOT Tests

Spec.	Description	Agency
Arizona Shear Test	Bond Strength	New Jersey DOT
California Test 417	Testing Soils and Waters for Sulfate Content	Caltrans
California Test 422	Testing Soils and Waters for Chloride Content	Caltrans
California Test 550	Surface Abrasion Resistance of Concrete Specimens	Caltrans
California Test 551	Suitability of Materials for Overlayment and Repair ()	Caltrans
California Test 553	Thermal Stability of Mortar Made with Hydraulic Cement	Caltrans
FM5-516	Low-Levels of Chloride in Concrete and Raw Materials	Florida DOT
FM5-587	Bond Strength of Repair Materials with Concrete by Slant Shear	Florida DOT
MRD-3	Flexural Strength () using Simple Beam with Center Point Loading	Vermont DOT
Tex-428-A	Coefficient of Thermal Expansion of Concrete	Texas DOT

Total of 56 Tests (including State DOT Custom Tests) + NTPEP

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Cost: "Strength" Tests

Test Speci	N. Tests	Cost	Total		
Comprossive Strongth	ASTM C ₃₉	1	\$275	\$1,070	
compressive strength	ASTM C109	3	\$795		
Modulus Elasticity	ASTM C469	1	\$375	\$375	
Tensile Strength	ASTM 496	1	\$130	\$130	
	ASTM C78	1	\$438	\$893	
Flexural Strength	VT MRD-3 - Vtrans	1	\$455		
	ASTM C882	4	\$4,720		
	ASTM C1042	1	\$1,000		
David Church ath	ASTM C1583	1	\$700	+0	
Bond Strength	Arizona Shear Test	1	\$620	\$8,475	
	CT551	1	\$1,000		
	FM 5-587	1	\$435		
TOTAL				\$10,943	

In order to meet DOT requirements for bond strength alone, the manufacturer should carry out 9 different types of tests for a total cost of approx. \$8,500

Cost: Fresh Properties & Volume Stability Tests

Test Specifications		N. Tests	Cost	Total
	ASTM C143	2	\$150	
	ASTM C191	1	\$180	
Markability	ASTM C230	1	\$58	* ~ / 9
workability	ASTM C266	1	\$170	\$940
	ASTM C403	1	\$220	
	ASTM C807	1	\$170	
	ASTM C157	3	\$1,867.5	
Volume Change	ASTM C596	1	\$600	\$2,588
	ASTM C1090	1	\$450	
	ASTM C531	2	\$967	
Thermal Stability	CT553	1	\$500	\$2,117
	Tex-428-A	1	\$650	
Absorption	ASTM C127	1	\$185	
	ASTM C642	1	\$125	\$310
TOTAL				\$5,952

6 different types of tests are requested for workability, a basic property that is measured either by slump or flow

RACTICES WE CAN NOT AFFORD TO DEFER

Cost: Durability Tests

Test Spe	cifications	N. Tests	Cost	Total	
Duurahilituu	ASTM C666	7	\$15,750	¢16 (02	
Durability	ASTM C672	1	\$742	\$10,492	
	AASHTO T260	3	\$480		
	ASTM C1152	1	\$200		
Chloride	ASTM C1202	2	\$925	\$2,245	
Content	ASTM C1218	2	\$315		
	CT422	1	\$200		
	FM 5-516	1	\$125		
Sulphates	AASHTO T105	1	\$150	\$ 250	
	CT 417	1	\$200	\$350	
Abrasion	CT550	1	\$900	\$900	
TOTAL			\$19,987		

To implement the 7 modifications of ASTM C666 costs approximately \$16,000. This raises the overall cost of durability tests

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Summary of Costs

Set of Tests	Calculated Cost	Approx. Cost
Strength	\$10,943	\$11,000
Workability and Volume Stability	\$5,962	\$6,000
Durability	\$19,987	\$20,000
NTPEP		\$10,000
Total Test Cost		\$47,000
Management Fees (Lab & Manufacturer)		\$30,000
TOTAL		\$77,000

It roughly costs \$47,000 to obtain the full set of tests that allows the submittal of a concrete patch repair material to QPL/APL at 40 DOT Agencies

An additional \$30,000 can be estimated in order to be able to manage 56 tests with minor, yet significant, differences between them

DOT Agencies have set up a system that makes product approvals quite costly and complex.

Porter's 5 Forces

Bargaining Power of DOTs is High

Power of Buyers

- DOTs are more concentrated than Manufacturers
- DOTs switching costs are low
- DOTs are price sensitive
- DOTs are well-educated regarding the product
- Substitutes are available
- DOTs purchases comprise large portion of Manufacturers' sales

Since the opposite is NOT true for these factors, Manufacturers' Power is Low.

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

Threat of New Entrants and Substitutes

Threat of New Entrants is Low

- Initial investment for Manufacturers is high.
- Accessing distribution channels for Manufacturers is difficult.

Threat of Substitutes is High

- Replacing rather than repairing can be cheaper for large projects.
- Quality and performance of replacing is often considered superior to repair.

Porter's 5 Forces: A Model for Preservation

Industry Attractiveness

Get a discussion going...

- Is this an attractive industry?
- Is it an industry that favors innovations?

Being in the QPL/APL is just the beginning...

- Being all products equal, competition is based on price
- For large jobs, contractors choose lower cost products
- No rewarding system is in place for products that bring additional benefits that can save time/money

Suggested Solutions

- DOTs agree on Regional Specs
 - Reduces number of tests and modifications
- Expand NTPEP to include all DOT test requirements and fully endorse it

 Reduces QPL/APL management cost by DOTs
- Create an independent avenue for innovative products that together with Lab tests also includes extensive field tests
 - AASHTO APEL, ITD (TSP2 Industry Technology Demonstration)
 - Keep as it is for existing products

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

PRACTICES WE CAN NOT AFFORD TO DEFER

Thank You!

Lorella Angelini 612 306 7567 <u>lor2257@gmail.com</u>

http://www.linkedin.com/in/langelini [] /angeliniconsultingservices (@LoriMinn

