NCHRP 12-100 Guidelines for Maintaining Small Movement Bridge Expansion Joints

National Bridge Preservation Partnership Conference Orlando, FL April 8-12, 2018

Research Team: Tripp Shenton (UD), Dennis Mertz (UD) & Pete Weykemp (GPI)

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

ACTICES WE CAN NOT AFFORD TO DEFER

Objective of the Project (as stated in RFP):

- Develop proposed guidelines with commentary for evaluating and maintaining small movement bridge joints to support the decisions of bridge owners. The guidelines would cover, as a minimum:
 - joint failure mechanisms;
 - performance metrics;
 - procedures for maintenance, repair, and replacement of bridge joints.
- The proposed guidelines are to be presented in a format suitable for AASHTO consideration.

Project Tasks:

- Phase I Synthesis report and procedures development
 - Task 1 Literature Review
 - Task 2 Stakeholder Survey
 - Task 3 Technical Memo
 - Task 4 Develop Procedures for Maintenance, Repair, and Replacement of Joints
 - Task 5 Outline of the Proposed Guidelines
 - Task 6 Interim report
- Phase II Guidelines development
 - Task 7 Develop proposed guidelines
 - Task 8 Prepare final deliverables (final report and standalone guidelines)

IATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

- Extensive search conducted using multiple databases
- Dearth of research on small movement joints
- Very limited number of sources that are directly relevant to this project

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

ACTICES WE CAN NOT AFFORD TO DEFER

Selected important sources

Price, A.R. (1984), *Performance in Service of Bridge Deck Expansion Joints*, TRRL Laboratory Report (Transport and Road Research Laboratory, Great Britain) 1984.

Dahir, Sabir H. and Mellott, D.B. (1987), "*Bridge Deck Expansion Joints"*, Transportation research record 1987: 16-24. Transportation Research Board, Washington, DC

Burke, Martin P. (1989) *NCHRP Synthesis of Highway Practice 141: Bridge Deck Joints*. September, 1989. Transportation Research Board, National Research Council. Washington, D.C.

Barnard, C.P. and Cuninghame J.R., (1997), *Improving the Performance of Bridge Expansion Joints: Bridge Deck Expansion Joint Working Group Final Report*, Crowthorne: Transport Research Laboratory Report

Purvis, Ron. (2003) NCHRP Synthesis of Highway Practice 319: Bridge Deck Joint Performance. Transportation Research Board, National Research Council. Washington,

- Gathered state/agency design and maintenance manuals
 - 36 design manuals
 - 14 maintenance manuals

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Task 2 – Stakeholder Survey

IATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

Task 2 – Stakeholder Survey

- Online survey was conducted of all stakeholders who have an interest in SMEJ owners, consultants, contractors, suppliers
- Gather information on their experiences with SMEJ's, performance, challenges
- Breakdown of responses by stakeholder:

Stakeholder	Number of completed			
	surveys	Represents 27 state		
Bridge owners	73	agencies		
Consultants	15	ageneies		
Contractors	6			
Suppliers/manufacturers	14			
Total	108			

Stakeholder Survey: Results

New Construction

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Stakeholder Survey: Results New Construction

Stakeholder Survey: Results

Maintenance, repair, and replacement

(a) Use in Maintenance, Repair and Replacement Growing potential but limited use Regularly used Phased out; no longer used Never used 60 50 40 30 Count 20 10 0 (b) Level of Satisfaction Very Dissatisfied Very Satisfied Satisfied Neutral Dissatisfied 100% 80% 60%

NATIONAL BRIDGE PRESERVAT

Asphatticplugjoint

Elastometiccellular

Percentage

40%

20%

0%

PRACTICES WE CAN NOT AFFORD TO DEFER

Jar pourable silicone Inverted "V" & "N" Open cell foam Closed cell foam

Stripseal Open joint Wartoush

Stakeholder Survey: Results Maintenance, repair, and replacement

ACTICES WE CAN NOT AFFORD TO DEFER

Stakeholder Survey: Common Modes of Failure

Joint	Modes of Failure
Asphaltic Plug Joint	Bond Failure/Separation of Joint from Header (10), Heave (9),
	Cracking (8), Rutting (8), Improper Material Mix (1), Misaligned
	Centering Pins (1), Insufficient Depth (1), Deterioration (1),
	Blowouts (1), Porous Asphalt (1).
Elastomeric cellular	Bond Failure/Separation of Joint from Header (18), Seal Falling
	Out (14), Debris Impaction (10), Tearing (9), Loss of Rebound (5),
	Cracking (5), Snowplow Impact (3), Header Failure (2), Poor
	Installation (2).
Poured Silicone Seal	Bond Failure/Separation of Joint from Header (25), Tearing (6),
	Debris Impaction (5), Cracking (3), Tire Wearing (3), Snowplow
	Impact (3), Header Failure (2), Poor Surface Preparation (2),
	Backer Rod Movement (1), Seal Falling Out (1).
Preformed inverted "V" & "M"	Bond Failure/Separation of Joint from Header (18), Tearing (5),
	Debris Impaction (4), Tire Wearing (3), Poor Installation (2),
	Cracking (1), Header Failure (1), Seal Falling Out (1).
Open Cell Foam	Bond Failure/Separation of Joint from Header (7), Debris
	Impaction (3), Improper Sizing (1), Tire Wearing (1).
Closed Cell Foam	Bond Failure/Separation of Joint from Header (12), Improper
	Sizing (3), Debris Impaction (3), Compression Set (1),
	Deterioration (1), Tearing (1), Loss of Elastic Properties Due to
	Heat (1).
Strip Seal	Tearing (24), Debris Impaction (14), Extrusion/Seal Pushed out of
	Joint (13), Header Failure (9), Bond Failure/Separation of Joint
	from Header (4), Cracking (3), Snowplow Impact (3).
Finger/Tooth Joint	Clogged Trough (3), Anchor Bolt Deterioration (2), Teeth
	Breaking (2), Misaligned Teeth (1), Snowplow Impact (1).

Stakeholder Survey: Results Strawman Performance Metrics

- 14 unique performance metrics were presented in the survey as strawman metrics
- Respondents were asked to rate the "effectiveness" of the metric and "ease of data collection"

Stakeholder Survey: Results Strawman Performance Metrics

Summary of more highly ranked performance metrics of those proposed in survey

	Owner	Supplier	Consultant	Contractor
Durability			-	
Service life of the joint	Х		Х	X
Service life of the substructure			Х	X
Inspectability				
Is the joint easily inspected	Х			
Can a leak be detected, and	Х			Х
Maintainability	-		•	
Is the joint easily repaired, and		Х		
Is the joint easily cleaned		Х		
Rideability	-		•	
Does the joint effect ride quality		Х	Х	
Constructability			•	
Constructability for repair		Х		X
Does quality of installation affect	V		V	V
performance			× *	· ·
Economy		-	•	
Life-cycle cost	Х	Х	Х	

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Task 6 – Draft Guidelines

IATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

RACTICES WE CAN NOT AFFORD TO DEFER

Table of Contents

- 1. Introduction
- 2. Types of Small Movement Expansion Joints
- 3. Modes of Failure
- 4. Evaluating Joints
- 5. Calculating Joint Movement and Sizing the Seal
- 6. Selecting a Replacement Joint
- 7. Preparing the Header
- 8. Procedure for Replacement, Repair, and Maintenance of Asphalt Plug Joints
- 9. Procedure for Replacement, Repair, and Maintenance of Compression Seal Joints
- 10. Procedure for Replacement, Repair, and Maintenance of Strip Seal/Armored Joints
- 11. Procedure for Replacement, Repair, and Maintenance of Pourable Joints
- 12. Procedure for Replacement, Repair, and Maintenance of Open/Sliding Plate/Butt Joints
- Appendix A Examples of Evaluating Joints
- Appendix B Examples of Calculating Joint Movement
- Appendix C Water Integrity Test

1. Introduction

- Scope and Objectives of the Guidelines
 - Limited to joint movement 4" or less
 - Brief mention of joint elimination but detailed coverage beyond scope
- Definitions
 - Maintenance any activity that is done on a regularly scheduled, cyclic basis
 - Repair any activity that is done on an intermittent basis to bring a joint back to proper functioning; does not constitute a complete reconstruction of the entire joint.
 - Replacement a complete reconstruction of the entire joint.

2. Types of Joints

- Five main types:
 - Asphalt Plug Joint (APJ)
 - Compression seal
 - Closed-cell foam, opencell foam, elastomeric cellular, inverted "V" & "M"
 - Strip seal/armored
 - Pourable
 - Open/sliding plate/butt

3. Modes of Failure

- Narrative descriptions
- Pictures

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

ONDED

EDGE

4. Evaluating Joints

- Assumes familiarity with AASHTO Manual for Bridge Element Inspection; Condition States (CS) and defects for joints
- 1. Prepare the work zone/traffic control
- 2. Inspect joint noting defects and damage
- 3. Measure total Lineal Feet (LF) of joint. Determine Condition States (CS) and quantities (LF) of the joint, per MBEI. Calculate the % of the joint in each CS
- 4. Determine the action required by entering the table with the highest CS and the corresponding LF by percentage of that CS

%Lineal Feet of Joint in the	Highest Condition State							
Highest Condition State	CS=1	CS=2	CS=3	CS=4				
100	Maintain	Repair	Replace	Replace				
75	Maintain	Repair	Repair	Replace				
50	Maintain	Repair	Repair	Replace				
25	Maintain	Maintain	Repair	Repair				

ACTICES WE CAN NOT AFFORD TO DEFER

5. Calculating the Joint Movement and Sizing the Seal

• Calculate joint movement

$$\begin{split} &\Delta = \alpha L \big(T_{\max} - T_{\min} \big) \quad \text{.....Total} \\ &\Delta_{\perp} = \Delta \cos \big(\phi \big) \qquad \text{.....Perpendicular to joint} \big(\phi - \text{skew angle} \big) \\ &\Delta_{\parallel} = \Delta \sin \big(\phi \big) \qquad \text{.....Parallel to joint} \big(\phi - \text{skew angle} \big) \end{split}$$

5. Calculating the Joint Movement and Sizing the Seal

• For replacement – adjust gap width for installation temperature

Adjustment in inches/10°F

Skew Ø	Steel Span Length (ft)								
(degrees)	50	100	150	200	250	300	350		
0	1/16	1/16	1/8	1/8	3/16	1/4	1/4		
5	1/16	1/16	1/8	1/8	3/16	1/4	1/4		
10	1/16	1/16	1/8	1/8	3/16	1/4	1/4		
15	1/16	1/16	1/8	1/8	3/16	1/4	1/4		
20	1/16	1/16	1/8	1/8	3/16	1/4	1/4		
25	1/16	1/16	1/8	1/8	3/16	3/16	1/4		
30	1/16	1/16	1/8	1/8	3/16	3/16	1/4		
35	1/16	1/16	1/8	1/8	3/16	3/16	1/4		
40	0	1/16	1/16	1/8	1/8	3/16	3/16		
45	0	1/16	1/16	1/8	1/8	3/16	3/16		

Adjustment in inches/10°F

Skew ϕ	Concrete Span Length (ft)									
(degrees)	50	100	150	200	250	300	350			
0	1/16	1/16	1/8	1/8	3/16	3/16	1/4			
5	1/16	1/16	1/8	1/8	3/16	3/16	1/4			
10	1/16	1/16	1/8	1/8	3/16	3/16	1/4			
15	1/16	1/16	1/8	1/8	3/16	3/16	1/4			
20	1/16	1/16	1/8	1/8	3/16	3/16	1/4			
25	1/16	1/16	1/8	1/8	3/16	3/16	1/4			
30	0	1/16	1/16	1/8	1/8	3/16	3/16			
35	0	1/16	1/16	1/8	1/8	3/16	3/16			
40	0	1/16	1/16	1/8	1/8	3/16	3/16			
45	0	1/16	1/16	1/8	1/8	1/8	3/16			

ACTICES WE CAN NOT AFFORD TO DEFER

5. Calculating the Joint Movement and Sizing the Seal

- Calculate max and min gap based on measured gap width and temps
- Calculate shear movement if joint is skewed
- Select a seal width using manufacturer's sizing tables
- Calculate
 - Maximum compression
 - Maximum tension
 - Maximum shear
 - Compression @ install

6. Selecting a Replacement Joint

- Performance metrics:
 - Joint opening
 - Joint movement
 - Skew
 - Intended service life
 - Installed cost

- Constructabilit
 - У
- Lead Time
- Location
- Traffic
- Durability

6. Selecting a Replacement Joint

	Max Opening (in)	Joint Movement (in)	Skew ¹	Expected Service Life (years) ²	Installed Cost	Construct- ability	Lead Time	Location/ environment	Traffic ³ (ADT)	Durability
Asphalt Plug Joint	3	<1	L-M	7.5	L	Н	М	М	L-M	М
Compression:										
Closed-cell Foam	4	<2-3	М	8.9	L	М	L	Н	М	L-M
Open-cell foam	4	<2-3	М	TBD	М	L	М	Н	М	TBD
Preformed inverted "V" & "M"	4	<4	М	10.0	М	L	L	M	М	М
Strip seal/ Armored joint	4	<3-4	М	16.0	Н	Н	Н	Н	Н	Н
Pourable joint	3	<1	L-M	7.5	L	L	L	Н	М	L
Open/Sliding Plate/Butt joint	3	<2-3	Н	23.1	L	L	L-M	Н	М	М

1. Skew: L=0°-15°, M=15°-25°, H>25° (but not unlimited)

2. Based on owner survey responses

3. Traffic (ADT): L=0-15,000; M=15,000-45,000; H>45,000 vehicles per day

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

6. Selecting a replacement joint

Switching from one joint type to another

To	APJ Pourable		Compression Closed Cell & Open Cell Foam	Preformed inverted "V" & "M" (Silicone/Neoprene)	Strip Seal	Open Sliding
110111		Header reconstruction	Remove existing header	Remove existing header	Not realistic as the API	Remove existing
		necessary Existing 20"	regardless of condition Existing	regardless of condition	has a $1-1/2^{\prime\prime}$ movement	header regardless of
		width would be larger	$20^{\circ} \times 2^{\circ}$ header would be larger	Fxisting 20" x 2" header	maximum. The strin seal	condition Install
		than the required 10".	than the required $10^{\circ} \times 3^{\circ} - 4^{\circ}$	would be larger than the	would not be functionally	anchorage and open
		Chip out an additional 1"-	header. Header reconstruction	required $10^{"} \times 3^{"} - 4^{"}$	optimized.	sliding plate.
		2" depth in the blockout.	with anchorage necessary.	header. Header	optimized	Construct a trough
		Drill and grout anchoring	Installation of closed-cell foam	reconstruction with		under joint (could be
APJ		bars. Pourable seal could	may have to be done at a later	anchorage necessary.		difficult in small
		be installed on the same	date. Open-cell could occur the	The inverted "V" and "M"		opening).
		day if elastomeric	same day, if elastomeric concrete	seals would not be		- I 0/
		, concrete is used.	is used.	optimized as they are		
				capable of much larger		
				movement than the		
				maximum 1-1/2" of the		
				APJ.		
	Remove existing		Existing header could remain, if in	Existing header could	Not realistic as the	Remove existing
	header and		serviceable condition and has	remain, if in serviceable	pourable seal has a 1-1"-	header, regardless of
	anchorage to 20" (10"		anchorage. Otherwise	condition and has	2" movement maximum.	condition. Install
	each side of opening).		reconstruct existing header, with	anchorage. Otherwise	The strip seal would not	anchorage and open
	Typical 3"-4" header		anchorage, as necessary.	reconstruct existing	be functionally	sliding plate. Installing
	is deeper than		Installation of closed-cell foam	header, with anchorage,	optimized.	the trough system
Pourable	required. Consider		may have to be done at a lator	as necessary. The "M"		would be diffice?
	'- º. +ime		Sollation			• -

7. Preparing the Header

- Design considerations
- Determination of header size and gap opening
- Replacement procedure
- In pictures: header construction

Saw cut to the limits of the new header.

Hammer out the header material.

Clean out the rubble. The crew is taking care to not hammer the rebar.

8. Procedure for Replacement, Repair, and Maintenance of Asphalt Plug Joints

8.1 Replacement of Asphalt Plug Joints
8.2 Repair of Asphalt Plug Joints
8.3 Maintenance of Asphalt Plug Joints
8.4 In Pictures: Installation of an Asphalt Plug Joint

ATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

8.1 Replacement of Asphalt Plug Joints

- 8.1.1 Design considerations
- 8.1.2 Determination of joint movement
- 8.1.3 Replacement procedure
 - 1. Saw cut the blockout
 - 2. Prepare the blockout surfaces
 - 3. Install backer rod
 - 4. Heating the APJ material
 - 5. Mixing the APJ material

- 6. Place the bridge plate
- 7. Installing the APJ material
- 8. Apply friction dressing material
- 9. Opening to traffic

8.2 Repair of Asphalt Plug Joints

8.2.1 Repair of rutting/extensive cracking

8.3 Maintenance of Asphalt Plug Joints

8.3.1 Procedure for sealing crack/minor debonding of Asphalt Plug Joints

8.4 In Pictures: Installation of an APJ

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

Project status:

- Project completed 9/30/16
- Final report and draft guidelines available at TRB (trb.org; search for project "12-100")
- Guidelines submitted to AASHTO SCOM
 - To be published by AASHTO as a guideline
 - Currently with AASHTO being prepared for publication

Acknowledgments

- National Academy of Sciences and NCHRP for funding the project
- NCHRP 12-100 Panel and Project Manager
- The many stakeholders who completed the survey, and who provided information and data
- Joint manufacturers, vendors, and suppliers who provided material, samples, literature, etc

Questions?

NATIONAL BRIDGE PRESERVATION PARTNERSHIP CONFERENCE 2018

PRACTICES WE CAN NOT AFFORD TO DEFER