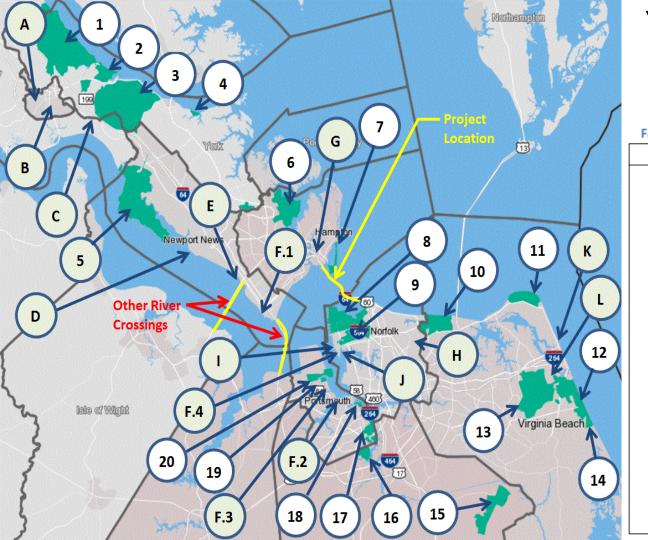
HAMPTON ROADS BRIDGE TUNNEL APPROACH STRUCTURES

DEVELOPING A CORROSION MITIGATION STRATEGY FOR SERVICE LIFE EXTENSION

ADAM MATTEO, VDOT ALI AKBAR SOHANGHPURWALA, CONCORR, INC. REX D. GILLEY, WSP | PARSONS BRINCKERHOFF NATIONAL BRIDGE PRESERVATION PARTNERSHIP

CONFERENCE, ORLANDO, 2018


HAMPTON ROADS BRIDGE TUNNEL

- SERVES VITAL FACILITIES
- ONE OF ONLY TWO MEANS OF REACHING NORFOLK &VIRGINIA BEACH
- ADT = 90,000
- 35 MILE DETOUR

Vital to the Nation: Access to Military Bases

Facilitie	s Served by the HRBT
	Military Facilities
1.	Camp Peary (Army)
2.	Naval Supply Center (Cheatham Annex)
3.	Naval Weapons Center Yorktown
4.	U.S. Coast Guard Training Center Yorktown
5.	Fort Eustis (Army)
6.	Langley Air Force Base
7.	Fort Monroe (Army)
8.	Naval Air Station Norfolk
9.	Naval Support Activity Norfolk
10.	Naval Amphibious Base Little Creek
11.	Fort Story (Army)
12.	Camp Pendleton (Marines)
13.	Naval Air Station Oceana
14.	Dam Neck
15.	Naval Auxiliary Landing Field Fentress
16.	Saint Juliet's Creek Annex
17.	Naval Shipyard Norfolk
18.	Naval Medical Center Portsmouth
19.	Coast Guard Station Portsmouth

20. Craney Island Fuel Depot (Navy)

Norfolk Naval Base (Atlantic Fleet)

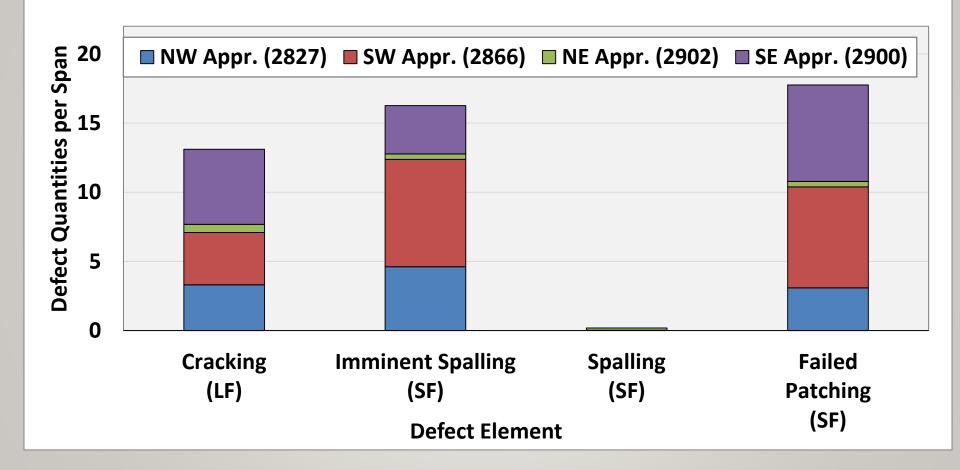
HAMPTON ROADS BRIDGE TUNNEL APPROACH BRIDGE DATA

Bridge	Year Built	Year Widened	Current General Condition Ratings			
			Deck	Super	Sub	
64 Eastbound North Approach	1974	-	5	5	5	
64 Eastbound South Approach	1974	-	5	5	5	
64 Westbound North Approach	1957	1999	6	5	5	
64 Westbound South Approach	1957	1999	5	4	4	

HAMPTON ROADS BRIDGE TUNNEL APPROACH BRIDGE DATA

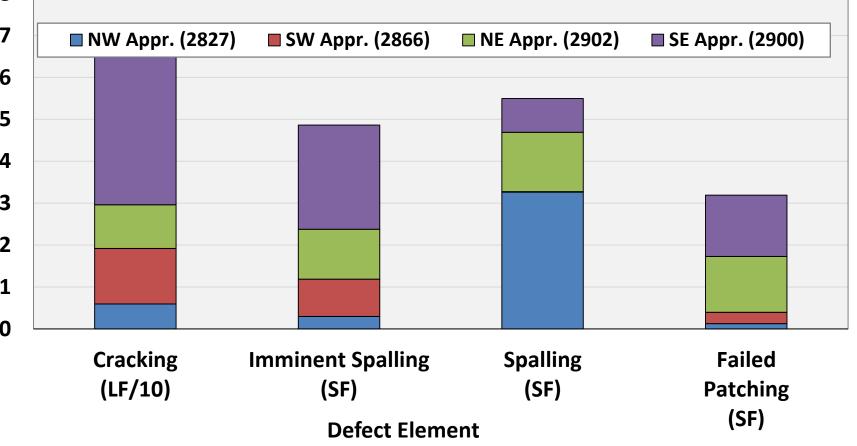
Bridge	Bridge Number	Year Constructed	Deck Surface Area (sq. ft.)	Wearing Surface Area (sq. ft.)	Length (ft.)	Width (ft.)	Number of Lanes
EBL North Approach (NW)	2827	1974	142,688	129,788	3,225	44	2
EBL South Approach (SW)	2866	1974	260,700	237,000	5,925	44	2
WBL North Approach (NE)	2900	1957	283,561	148,800	6,250	44	2
WBL South Approach (SE)	2902	1957	158,225	265,436	3,250	44	2
Totals			845,174	781,024	18,650		

Dridge	Bridge	Numberof	Number of				
Bridge	Number	Spans	Beams	Bents	Caps	Piles	Abutments
EBL North Approach (NW)	2827	43	303	42	42	338	2
EBL South Approach (SW)	2866	80	560	79	79	449	2
WBL North Approach (NE)	2900	123	1,111	122	122	601	2
WBL South Approach (SE)	2902	65	629	64	64	472	2
Totals		311	2,603	307	307	1,860	8


Westbound Structures Were Widened in 1999

The Challenge

- \$700M Needed to Replace 4 HRBT Structures
- Virginia has over 21,000 Highway Structures
- Annual Bridge Maintenance Funds: \$160M
- Annual Bridge Capital Improvement Funds: \$220M
- 25 "Special Structures" Annual Needs = \$80M
- Replacement Needs = \$400M per year


		STRUCTURE	ROUTE	YEAR BUILT (AGE)	2018-2027	2028-2037	2038-2047	TOTAL
	BRISTOL	Big Walker Mountain	I-77	1972	\$12 M	\$2 M	\$5 M	\$20 M
S	BRISTOL	East River Mountain	I-77	1974	\$13 M	\$3 M	\$6 M	\$21 M
	HAMPTON ROADS	Hampton Roads Bridge Tunnel		WBL - 1958 EBL - 1974	\$86 M	\$51 M	\$113 M	\$250 M
IUNNELS	HAMPTON ROADS	Monitor Merrimac Memorial Bridge Tunnel	I-664	1992	\$142 M	\$46 M	\$110 M	\$298 M
NN.	HAMPTON ROADS	Elizabeth River Downtown Tunnel			Maintained by Elizabeth River Crossings			\$0 M
-	HAMPTON ROADS	Elizabeth River Midtown Tunnel			Maintainea	\$0 M		
	NORTHERN VIRGINIA	Rosslyn Tunnel	I-66	1983	\$4 M	\$2 M	\$2 M	\$8 M
				Subtotal	\$257 M	\$103 M	\$236 M	\$597 M
	RICHMOND	Benjamin Harrison	Rte 156	1967	\$56 M	\$3 M	\$4 M	\$63 M
5	HAMPTON ROADS	Chincoteague	Rte 175	2010	\$1 M	\$2 M	\$18 M	\$21 M
GE	HAMPTON ROADS	High Rise	I-64	1969	\$5 M	\$2 M	\$0 M	\$7 M
BRID	HAMPTON ROADS	Berkley	I-264	WBL - 1952 EBL - 1990	\$78 M	\$20 M	\$18 M	\$116 M
MOVABLE BRIDGES	HAMPTON ROADS	Coleman	Rte 175	1996	\$9 M	\$11 M	\$14 M	\$33 M
	HAMPTON ROADS	James River	Rte 17	1980	\$55 M	\$6 M	\$25 M	\$86 M
ŃO	FREDERICKSBURG	Eltham	Rte 30/33	2007	\$12 M	\$1 M	\$9 M	\$22 M
-	FREDERICKSBURG	Gwynn's Island	Rte 223	1938	\$18 M	\$1 M	\$40 M	\$59 M
				Subtotal	\$234 M	\$45 M	\$127 M	\$406 M
ES	BRISTOL	460 Connector	460	2017	\$1 M	\$0 M	\$3 M	\$4 M
UR	SALEM	Smart Road Bridge		2001	\$1 M	\$1 M	\$2 M	\$4 M
ЪС	RICHMOND	Varina Enon	I-295	1990	\$69 M	\$20 M	\$11 M	\$99 M
TRI	RICHMOND	895/Pocahontas Parkway	895		Maintained by Globalvia		balvia	\$0 M
COMPLEX FIXED SPAN STRUCTURES	HAMPTON ROADS	HRBT Approaches	I-64	WBL 1957 EBL 1974	\$79 M	\$490 M	\$15 M	\$584 M
) SP	HAMPTON ROADS	Willoughby Bay	1-64	1972	\$33 M	\$2 M	\$0 M	\$35 M
XEC	HAMPTON ROADS	MMMBT approaches	1-664	1992	\$36 M	\$48 M	\$20 M	\$104 M
K FI	HAMPTON ROADS	James River bridge approaches	Rte 17	1980	\$61 M	\$38 M	\$23 M	\$122 M
PLE	HAMPTON ROADS	I-64 High Rise bridge approaches	1-64	1969	\$22 M	\$13 M	\$0 M	\$35 M
N	FREDERICKSBURG	Norris bridge	Rte 3	1957	\$27 M	\$258 M	\$12 M	\$297 M
ŭ	Subtota					\$869 M	\$85 M	\$1,283 M
	Total (rounded to \$100M				\$0.8 B	\$1.0 B	\$0.5 B	\$2.3 B

SUPERSTRUCTURE DEFECTS

SUBSTRUCTURE DEFECTS

Element Tag	Ele- ment Family	Year Built	Age at Testing	Element Design	Notes
BM-50-III-74	Beam	1974	40	AASHTO Type III - 50 foot	
BM-50-III-85	Beam	1985	29	AASHTO Type III - 50 foot	
BM-50-III-86	Beam	1986	28	AASHTO Type III - 50 foot	
BM-50-III-92	Beam	1992	22	AASHTO Type III - 50 foot	
BM-50-III-96	Beam	1996	18	AASHTO Type III - 50 foot	
BM-50- ORG-57	Beam	1957	57	Pre-Stressed - 50 foot	
BM-75-III-74	Beam	1974	40	AASHTO Type III - 75 foot	
DT-57	Deck	1957	57	Concrete Deck Top	
DT-74	Deck	1974	40	Concrete Deck Top	
DT-96	Deck	1996	18	Concrete Deck Top	
DT-E-85	Deck	1985	29	Concrete Deck Top	Epoxy coated rebars
DT-E-86	Deck	1986	28	Concrete Deck Top	Epoxy coated rebars
DT-E-92	Deck	1992	22	Concrete Deck Top	Epoxy coated rebars
PC-57	Pile Cap	1957	57	Concrete Pile Cap	
PC-74	Pile Cap	1974	40	Concrete Pile Cap	
PC-85	Pile Cap	1985	29	Concrete Pile Cap	
PC-E-86	Pile Cap	1986	28	Concrete Pile Cap	Epoxy coated rebars
PC-E-92	Pile Cap	1992	22	Concrete Pile Cap	Epoxy coated rebars
PC-E-96	Pile Cap	1996	18	Concrete Pile Cap	Epoxy coated rebars
PL-24-74	Piles	1974	40	24 Inch Square Pile	
PL-24-85	Piles	1985	29	24 Inch Square Pile	
PL-24E-86	Piles	1986	28	24 Inch Square Pile	Epoxy coated deformed bars and spiral

COMPLEXITY

CORROSION CONDITION EVALUATION

- I. Chloride Profile Analysis
- 2. Carbonation Testing
- 3. Clear Concrete Cover Survey
- 4. Delamination Survey
- 5. Electrical Continuity

CHLORIDE CONTAMINATION & DIFFUSION

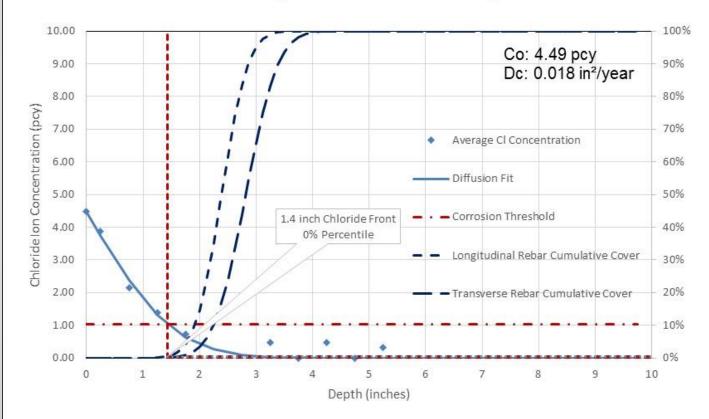
Fick's Second Law of Diffusion

$$C_{(x,t)} = C_0 \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right]$$

Accumulation of Chlorides with time

$$C_{(x,T)} = \int_{0}^{T} m \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right] dt$$

DECK CONDITION

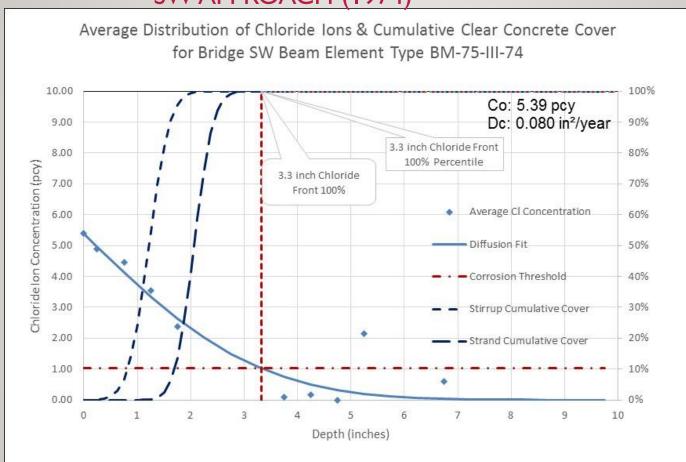

- Eastern Approaches
 - Impressed current cathodic protection system
 - Not functional due to:
 - Lack of lightning protection
 - Insufficient and/or improper grounding

DECK CONDITION

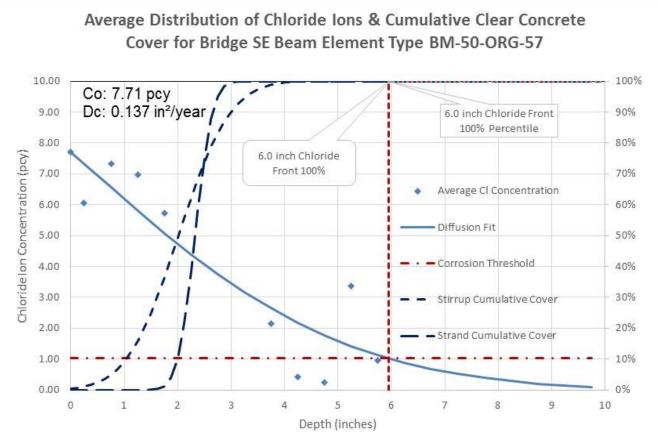
Western Approaches

- In good condition
- Minimal damage (0.3%), mostly concentrated at joints
- Thin polyester overlay at the end of its service life

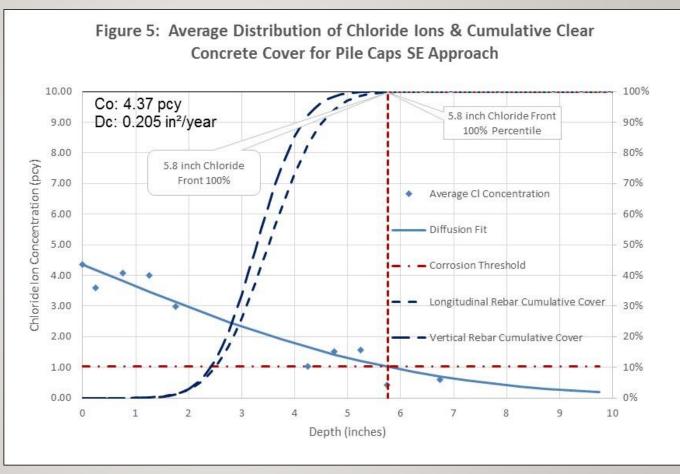
Average Distribution of Chloride Ions & Cumulative Clear Concrete Cover for Bridge Decks of the Western Approaches


BEAM CONDITION

- Southern approaches exhibit higher damage than the Northern approaches. SW Approach exhibits damage an order of magnitude higher than the other 3 approaches.
- Significantly lower cover (2.78 vs 4.0) on the bottom surface is likely responsible.
- Beams experience wave action during big storms.


BEAM DAMAGE ON SW APPROACH

BEAM CHLORIDE CONTAMINATION SW APPROACH (1974)


BEAM CHLORIDE CONTAMINATION SE APPROACH (1957)

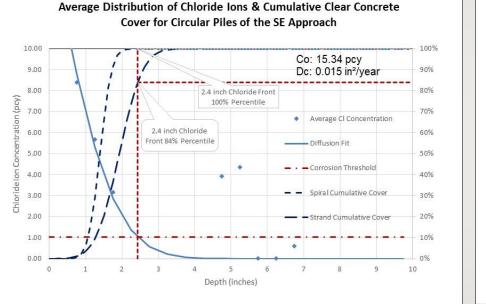
PILE CAPS CONDITION & CHLORIDE CONTAMINATION

 Eastern and Western Approaches have suffered 3.4% and 0.5% damage, respectively.

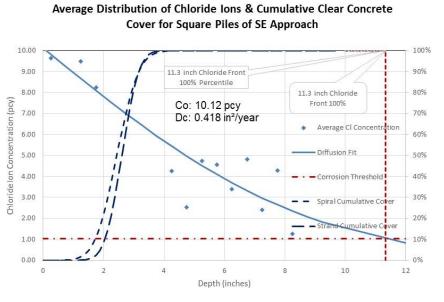
Chloride front on the Eastern and Western Approaches range from 4.1 to 5.8 inches and 1.3 to 2.8 inches, respectively.

PILE CAP CONDITIONS

PILE CONDITION

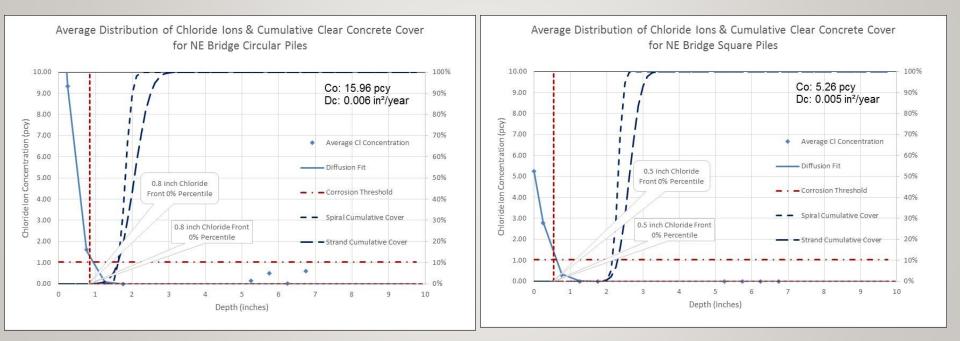


PILE CONDITION

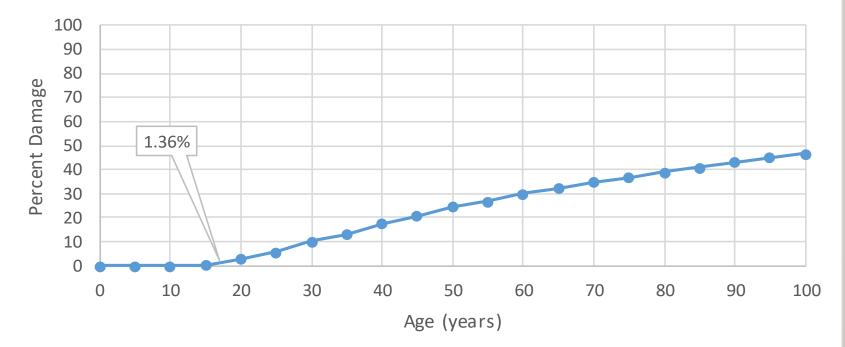


PILE CHLORIDE CONTAMINATION

CIRCULAR PILES SE APPROACH


SQUARE PILES SE APPROACH

NEWER PILE CHLORIDE CONTAMINATION


CIRCULAR PILES NE APPROACH

SQUARE PILES NE APPROACH

NEWER PILES – SERVICE LIFE PROJECTION

Estimated Projection of Damage with Age - Square Piles (PL-24E-96) with No Jackets

RECOMMENDATIONS - DECK 30 – 40 YEAR LIFE EXTENSION

- I. Install lightning protection system on all four bridge structures.
- 2. Repair and make operational the existing impressed current cathodic protection systems on the NE and SE approaches.
- 3. Perform Type B Patch repairs, mill off the top 1.25 inches of concrete, and install a rigid concrete (a latex modified concrete) overlay on decks of the NW and SW approaches.

RECOMMENDATIONS - BEAMS 30 – 40 YEAR EXTENSION

- I. Replace 51 beams which exhibit damage in excess of 15%.
- 2. Patch repair all damage on all beams including those that will not receive a cathodic protection system.
- 3. Install hybrid cathodic protection system on all beams except those replaced during immediate repairs, beams with damage in excess of 15% and beams constructed in 1996.

RECOMMENDATIONS – PILE CAPS

30 - YEAR EXTENSION

- Patch repair all damage with discrete anodes on the pile caps of the NW and the SW Approaches.
- 2. Patch repair all damage and install titanium ribbon anode in slots on the caps of the NE and SE Approaches.

50 - YEAR EXTENSION

- I. Patch repair all damage.
- 2. Install titanium Ribbon anode in slots on all pile caps.

RECOMMENDATIONS - PILES

30 - YEAR EXTENSION

- **50 YEAR EXTENSION**
- Ι.
- 2.
- Remove all existing jackets. I. Remove all existing jackets.
- Install hybrid jacket system. 2. Install ICCP jacket system.

COST OF RECOMMENDED ACTION

30 – YEAR EXTENSION

50 - YEAR EXTENSION

- I. Remove all existing jackets.
- 2. Install hybrid jacket system.

COSTS

Cost Estimate for 40 to 50 Year Life Rehabilitation							
Component or Element	Work Item	Estimate of Initial Cost*					
Преск	Rigid Concrete Overlay with Joint Elimination and Repair of Existing Deck CP System	\$9M					
Beams	Hybrid Cathodic Protection	\$70M					
Pile Caps	Titanium Ribbon in Slots (Patch + Ti Mesh Anode)	\$5M					
Piles	Hybrid Cathodic Protection Jacket	\$12M					
	Total	\$96M					

* An estimated \$5M will be required for maintenance over the life of this option

SUMMARY OF OPTIONS

- I. Rehabilitation \$101M for 40 to 50 Year Service Life
- 2. Replace: \$700M for 100 Year Service Life
 - Carbon fiber strands for piles and caps
 - Stainless bars in deck
 - Stainless strands in girders