

Impact and Repairs for End Region Cracking in Prestressed Girders

John Lawler, PhD, PE – WJE, Northbrook, Illinois Brian Merrill, PE – WJE, Austin, Texas Sam Keske, PhD, PE – WJE, Austin, Texas

Problem

 Oklahoma DOT (ODOT) prestressed girders: frequent anchorage zone cracking

Approx. 1-2 weeks after casting

Investigation for ODOT

- ✓ Phase I: Review Existing Conditions
- ✓ Phase 2: Analyze Service Life & Repairs
- ✓ Phase 3: Design Crack Control Strategies
- ✓ Phase 4: Full-Scale Trial Implementation

Field Investigation

 Girder cracking tracked from casting through deck addition at two bridges (2015 and 2017)

Crack Distribution

- Crack density within first 40 inches:
 - 20 to 30 in. of crack per ft² of web
 area
 - Crack grew up to 10%-20% in first several weeks (3 to 6 in.)
- Cracks did <u>not</u> close when girders were erected or when deck was cast

Crack Widths

- Marked in field; measured using crack card and loupe
- Crack widths:
 - 8 to 10 mils
 - Narrowing away from end

Nature of Cracking

- High prestressing forces
 - Start at release or first lift; slight growth due to drying shrinkage
- Not structurally significant
 - Not aligned with strands;
 perpendicular to typical shear cracks
- Impact on Durability?

Service Life Modeling with Cracks

- Model: Level of corrosion-related deterioration versus time
- Chloride transport
 - Driving force: surface exposure
 - Mechanisms: <u>diffusion</u>, capillary adsorption, permeation
 - Resistance: concrete quality
 - Reduced by Cracking

Time to damage = $t_i + t_p$

Modeling Chloride-Induced Corrosion

- End of Service Life =
 - **Deterioration > Limit**
 - Serviceability
 - Structural Integrity

 ODOT Girders: Corrosion-induced concrete surface damage > 15%

Probabilistic Modeling

Probabilistic Approach

Combinations of independent variables: Monte-Carlo Simulation

Probabilistic Approach

Probabilistic Analysis – Consideration of Cracks

Low Risk

High Risk

ODOT Girder Chloride Exposure

- Chloride tests on several bridges
 - Variable by geography and traffic density; joint condition
 - Three general chloride exposure levels:
 - Low exposure = 1,000 PPM
 - Moderate exposure = 2,000 PPM
 - Severe exposure = 4,000 PPM

ODOT Service Life Considerations

- Assumptions
 - Girder exposure
 - Concrete performance
 - Geometry (cover)
- Relative performance more important for ODOT
 - Allows cost-benefit evaluation of repair

Parametric Study of Service Life

- Key factor: Cracking
- Factors:
 - Chloride exposure: Low, Moderate, or Severe
 - Crack density: o to 3o in²/ft
 - Crack width: o to 12 mils
 - Two mixtures (two precasters)

Crack-Affected Surface Area

- Increased diffusion near cracks
 - Influence width equal to cover on each side of crack (45°)
 - ODOT: 1.5 in. concrete cover, so assume 3 in. of affected width

"Diffusion Coefficient" for Cracked Concrete

- Uncracked diffusion based on concrete mixture
- Large cracks (>10 mils):
 Max. diffusion of 0.5 in²/yr

Diffusion Coefficient for Uncracked Concrete

- Empirical Model for Diff. Coef.
 - Mix 1:
 - Portland cement only
 - w/cm = 0.28
 - Mix 2:
 - 20% Fly ash
 - w/cm = 0.33

Predicted Service Life – Low Exposure

• SL reductions if both:

- Crack density > 5 in/ft²
- Crack width > 2 mils

Predicted Life

Exposure	Uncracked		Potential Reduction
Low	100+ yr	~30 yr	70%

Predicted Service Life – Moderate (and Severe) Exposure

- SL reductions for nearly all crack width and density
- Relative magnitude of reduction less than low exposure

Predicted Life

Exposure	Uncracked	Cracked (observed)	Potential Reduction
Moderate	~30 yr	~15 yr	50%
Severe	~17 yr	~10 yr	40%

Influence of Mix

 In uncracked concrete, SCMs improved service life

 Cracks override benefit from SCMs

Crack Repair

- Service Life Modeling Cracks should be repaired
- Conventional options:
 - Epoxy injection, but unnecessary for anchorage zone (not structural in nature)
 - Silane, but most efficient when addressing small cracks (< 10 mils)

ODOT: No current consensus strategy

Discrete Crack Seal

- For primary cracks (> 10 mils), local surface application:
 - Epoxy paste:
 - Rigid trouble if cracks grow
 - Acrylic/silicone/polyurethane sealant:
 - Flexible accommodate crack growth

Blanket Crack Treatment

- More helpful if > 10 in./ft² of cracking present
- Review need after addressing wide discrete cracks

Blanket Crack Treatment

Epoxy/polymer-resin based surface sealers

Silane with either acrylic paint or silicone resin coating

High-build elastomeric polyurethane with aliphatic top coat

Implementation of Combined Strategy

Ensure compatibility of discrete and blanket treatment systems

System	Discrete Crack Seal	Blanket Treatment
Rigid	Ероху	Epoxy/polymer-resin based surface sealers
Flexible	Acrylic/silicone/ polyurethane "caulk"	Silane & acrylic/silicone coating; or High-build polyurethane w/top coat

Repair for New Girders

- Delay treatment until shortly before shipment or > 56 days if possible, due to crack growth
 - Flexible materials more forgiving

Recommend treat all girders

Repair for Existing Girders

Focus below expansion joints

Conclusions

- High density of cracking in webs at anchorage zones not structural, but likely to impact durability
- WJE performed modeling considering cracks to quantify relative impact on service life
- Combined crack repair strategy to address both narrow and wide cracks recommended

Thanks! Questions?

John Lawler, PhD, PE <u>jlawler@wje.com</u> (847) 756-6508

Brian Merrill, PE <u>bmerrill@wje.com</u> (512) 257-4809

