Fighting Corrosion & Preserving Bridges

by **Siva Venugopalan** Principal Engineer Siva Corrosion Services, Inc. <u>Siva@SivaCorrosion.com</u>

Corrosion-Related Concrete Damage

Condition of Structure

Penn DOT - I-95 in Philadelphia

Corrosion in bridges leads to emergency closures and expensive repairs.

Concrete Quality for 100-Year Life

- Concrete should have the following properties:
 - Strength, workability
 - Resistance to freeze thaw
 - Resistance to chloride penetration
 - Resistance to sulfate attack
 - Resistance to Alkali-Silica Reaction
 - Abrasion resistance

Time to Corrosion Initiation

Diffusion Equation:

$$C_{x,t} = C_o \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right]$$

• Using

- > Age (years)
- Rebar Cover of 1.5", 2.5", and 3.5"
- Average surface chloride for deck, substructure, and piles
 - in marine environments
- Chloride at the rebar = 400 ppm
- Diffusion coefficients (in²/yr.) of:
 - ✓ 0.01 in²/yr. Excellent durability,
 - ✓ 0.03 in²/yr. Good to fair durability,
 - ✓ 0.09 in²/yr. Poor Durability

Time to Concrete Damage for Various Rebar Depth

Diffusion property and cover varies within a bridge

Chloride-Induced Corrosion

- Chloride from deicing salt application diffuses into concrete
- When chloride at rebar level exceeds 1.2 lb/CY, passive film breaks down and corrosion initiates
- If pH <11, corrosion can initiate at lower chloride levels
- If sulfate is present, chloride may not be required for corrosion to begin

Diagnosis before Treatment

- When a bridge experiences corrosion, we want to answer the questions:
 - How bad is bad?
 - What is the rate of deterioration?
 - How do we cost effectively extend the life?
- SCS develops a strategic inspection/evaluation plan to quickly indentify/quantify problems.
- Average preservation cost for owners:
 20 to 25% compared to replacement.

Assessment of Concrete Structures

- 1. Non-Destructive Evaluation (earlier identification)
 - Identify and quantify deterioration of concrete and steel
- 2. Electrochemical Testing
 - Quantify time-to-failure, corrosion rates, future section losses
- 3. Laboratory Testing
 - Additional material and corrosion analysis
- 4. Estimate Service Life
 - Recommend cost effective solution

Non-Destructive Testing (NDT)

- Use NDT to see hidden problems
- Minimize inspection time and damage to the structure
- Primary NDT tools:
 - Ground Penetrating Radar (GPR)
 - Infrared Thermography
 - Impact-Echo
 - Ultrasonic Tomography

Laboratory Testing

- Laboratory Testing
 - Chloride Content Profiling (AASHTO T-260, ASTM C1152)
 - Chloride Migration Test NS State (NT Build 492)
 - Apparent diffusion coefficient (ASTM C1556, NT BUILD 443)
 - pH Indicator (Phenolphthalein)
 - Rapid Chloride Permeability (ASTM 1202)
 - Compressive Strength (ASTM C39)
 - Petrographic Analysis to Examine:
 - General Concrete Properties (density, air-void, w/cm) (ASTM C876)
 - Alkali-Silica Reactivity
 - Freeze-Thaw Damage (ASTM C472)

Sampling Size

• Chloride cores shall be 4-inch diameter

A smaller core or powder samples can lead to significant variation in chloride level .

More sampling locations needed

Processing Chloride Cores

- Mark 0.5-inch horizons along the depth of the core.
- Dry cut through the core at each horizon into concrete discs (slices).
- Pre-crush each slice into ~0.25-inch maximum size pieces.
- Pulverize each pre-crushed slice and pass through #50 sieve.
- Thoroughly clean after each pre-crush and pulverize session.
- Digest each sample in acid to extract chloride from the concrete powder.
- Titrate each sample to determine the chloride content.
- Process titration data to obtain chloride content.
- Perform chloride test at various depths of the core to obtain chloride profile for each core.
- Tabulate chloride data at various depths for analysis and service life calculations.

Case Study 1 I -581 over Williamson Road, Roanoke, VA

Bridge Information

- Built: 1968
- Regular reinforced concrete
- 5 Spans, 4 piers, 2 abutments

Visual Conditions

SCS Approaches

- Visual survey
- Delamination survey
- Concrete cover
- Chloride profile analysis
- Carbonation
- Petrographic analysis
- Service life modeling

Inspection Findings

Element	% Damage	Avg. Cover (in)	95% Cover (in)	Cl% over 1000 ppm	Cl% over 500 ppm	Avg. Diffusion Coeff. (in²/yr)	Carbonation Depth (in)	Petro. Analysis
Pier Caps	25.3	2.06	1.01	60%	60%	0.070	0.50	Generally good quality concrete
Pier Columns	17.3	2.50	1.48	17%	17%	0.018	1.15	
Abutments	4.2	2.67	1.15	25%	25%	0.039	0.64	

Service Life Analysis

• Using chloride profile, cover, and concrete damage, develop time to corrosion initiation and future concrete damage.

Service Life Processing – Pier Caps

Service Life Processing – Pier Columns

Service Life Processing - Abutments

Conclusions and Viable Options - Piers

- Viable repair options:
 - A. Patch repairs + Impressed Current Cathodic
 Protection (ICCP)
 - B. Patch repairs + Electrochemical Chloride
 Extraction (ECE) + a breathable sealer, or
 - C. Patch repairs + sprayed Galvanic Cathodic
 Protection (GCP) system

Conclusions and Viable Options - Abuts

• The viable repair options:

- A. Patch repairs + discrete GCP anodes + seal
- B. Patch repairs + thermal sprayed GCP, or
- C. Patch repairs + ECE + a breathable sealer

Life Cycle Cost Estimate

Bridge Element	Description	Initial Cost	Additional Repair Cost (50 years)	Additional MOT Cost (50 years)	Total
		\$784,849	\$147,311	\$0	\$932,160
Pier Caps	Patch + ECE				
Pier Columns	Patch + ECE + Seal	\$231,000	\$85,633	\$18,206	\$334,839
	Patch + ICCP	<mark>\$229,032</mark>	<mark>\$147,311</mark>	<mark>\$0</mark>	<mark>\$376,343</mark>
Abutments	Patch + Anodes +	\$12,589	\$49,250	\$0	\$61,840
	Seal				
Su	btotals	\$1,028,438	\$282,194	\$18,206	\$1, 328,839

SCS Recommendations

- Pier Caps Patch + ECE + Seal
- Pier columns Patch + ECE + Seal
- Abutments Patch + Discrete Anode + Seal

Limitations of ECE

- ECE is not suitable for structures with high strength steel
- ECE is not suitable for structures with moderate to severe ASR

ECE AND SPRAYED ZINC ANODE ON 11 BRIDGES IN RICHMOND, VA

ECE on Pier – 11 Bridges

ECE on Pier – 11 Bridges

Thank you!

Questions

