

The Evaluation of Surface Preparation Methods for Chloride Remediation

Bobby Meade – Greenman Pedersen Inc. Sudhir Palle – University of Kentucky Theodore Hopwood II – University of Kentucky Michael Baase – Kentucky Transportation Cabinet

KTC-16-08/SPR14-484-1F CHLORIDE CONTAMINATION REMEDIATION ON STEEL BRIDGES

Study Objectives:

- Review current processes for surface preparation
- Precondition steel panels by cyclic salt fog exposure
- Clean the corroded steel panels with candidate surface preparation methods
- Assess any retained chlorides

Research Approach

- Use salt fog exposure to replicate contaminated/pitted field conditions.
- Measure chlorides on the panels by boiling extraction.
- Use scanning electron microscopy (SEM) to determine the distribution of any retained chlorides.

Test Panel Preconditioning

Surface roughness of the preconditioned panels was approximately 20 mils and chloride contamination averaged 500 µg/cm².

Test Panel Apportionment

Pre-surface Preparation Boiling Extraction

Surface Preparation Methods

- Thirty-two surface preparation methods.
- Eight dry methods, with combinations of abrasive material (steel grit, mineral slag, glass, and aluminum oxide), abrasive size, and re-blasting (after flash rusting).
- Twenty-four wet methods, with combinations of water pressure, water abrasive mixes, water temperature, and chemical additives.

Surface Cleanliness

SSPC SP 10 SSPC VIS4 WJ-1

Post-surface Preparation SEM Assessment

Post Cleaning % Cl⁻

Post Cleaning Cl⁻ Surface Concentration

Wet Method

Dry Method

Chemical Water/Abrasive

- 1. Map is 73 mils x 59 mils.
- 2. Spot is 4.7 mils across the horizontal axis.
- 3. Chloride removed 99.1%
- 4. Chloride $6.4 \,\mu g/cm^2$

Chemical Water Jetting

- 1. Map is 50 mils x 37.5 mils.
- 2. Spot is 2.25 mils across the horizontal axis.
- 3. Chloride removed 98.5%
- 4. Chloride 10.3 µg/cm²

Chemical Steel Grit 40/50

- 1. Map is 49 mils x 37 mils.
- 2. Spot is 3.6 mils across the horizontal axis.
- 3. Chloride removed 98.1%
- 4. Chloride 7.9 μ g/cm²

Chemical Mineral Slag

- 1. Map is 117 mils x 88 mils.
- Spot is 30.0 mils across the horizontal axis.
- 3. Chloride removed 98.0%
- 4. Chloride 10.3 μ g/cm²

4.8K psi wash, Steel Grit 40/50

- 1. Map is 86 mils x 60 mils.
- 2. Spot is 18.1 mils across the horizontal axis.
- 3. Chloride removed 95.9%
- 4. Chloride 17.1 μ g/cm²

Estimated Equivalent Chloride Levels

- 551 µg/cm²
- 1930 µg/cm²
- 409 µg/cm²
- 120 µg/cm²
- 326 µg/cm²

Conclusions

- Wet surface preparation methods are most effective in remediating chlorides
- Repeated dry abrasive blast cleaning is nearly as effective
- No method tested cleaned to less than 5 µg/cm² chloride
- Remaining chlorides are deposited in "hot spots" with elevated chloride concentrations
- Coating failure is likely at "hot spots"

Thank You

Contact information for authors

- Bobby.meade@uky.edu
- Sudhir.palle@uky.edu
- Ted.hopwood@uky.edu