Examples of Decision Support Using Pavement Management Data

John Coplantz, PE
Pavement Management Engineer
Oregon Department of Transportation
October 13, 2016
Decision Levels*

• Strategic
• Network (Tactical)
• Project (Operational)

*Pavement Management Guide, 2nd Ed.
AASHTO, 2012
<table>
<thead>
<tr>
<th>Level</th>
<th>Audience</th>
<th>Types of Decisions</th>
<th>Apply to</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic</td>
<td>Politicians Commission Agency Heads</td>
<td>Perf. Meas./Targets Funding Impacts Pavement Strategy</td>
<td>Entire Network</td>
<td>Low</td>
</tr>
<tr>
<td>Project</td>
<td>Project and Maintenance staff</td>
<td>Scope refinement Thickness design Materials selection</td>
<td>Project or corridor</td>
<td>High</td>
</tr>
</tbody>
</table>
Strategic Network Project Network
STRATEGIC LEVEL

• What is the condition of our roads?
Measuring Pavement Conditions

AUTOMATED

WINDSHIELD

National Pavement Preservation Conference 2016
Pavement Rating

- 100% Survey
- Score each PMS section
- Sum miles in each category
- Calculate % Fair-or-better mileage
STRATEGIC LEVEL

• What is the condition of our roads?
• Are they getting better or worse?
Performance Measures and Targets

Pavement Condition - Percent of miles rated 'fair' or better out of total miles on ODOT highway system

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2007</td>
<td>85%</td>
<td>78%</td>
</tr>
<tr>
<td>2008</td>
<td>86%</td>
<td>78%</td>
</tr>
<tr>
<td>2009</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2010</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2011</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2012</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2013</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2014</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2015</td>
<td>87%</td>
<td>78%</td>
</tr>
<tr>
<td>2016</td>
<td>85%</td>
<td>78%</td>
</tr>
</tbody>
</table>
STRATEGIC LEVEL

• What is the condition of our roads?
• Are they getting better or worse?
• How much money should we allocate to our pavement programs?
STRATEGIC LEVEL

• What is the condition of our roads?
• Are they getting better or worse?
• How much money should we allocate to our pavement programs?
• How should we prioritize our pavement investments?
Investment Priorities

<table>
<thead>
<tr>
<th>Route Strategy</th>
<th>Treatment Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Importance</td>
<td>Cost / Benefit</td>
</tr>
<tr>
<td>1. Interstate</td>
<td>1. Chip Seals / 1” Lift</td>
</tr>
<tr>
<td>2. State Level (NHS) Routes</td>
<td>2. 2”-3” Paving</td>
</tr>
<tr>
<td>3. Region / District Level</td>
<td>3. Multi-lift 3R Paving</td>
</tr>
<tr>
<td>Routes</td>
<td>4. Reconstruction</td>
</tr>
</tbody>
</table>

NPPC16 National Pavement Preservation Conference 2016
Treatment Priorities

<table>
<thead>
<tr>
<th>Condition</th>
<th>Typical Treatment</th>
<th>Life</th>
<th>$/LM/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td>Crack Seal</td>
<td>2 yrs</td>
<td>$1,500</td>
</tr>
<tr>
<td>Good</td>
<td>Chip Seal</td>
<td>5 yrs</td>
<td>$5,000</td>
</tr>
<tr>
<td>Fair</td>
<td>1” Overlay</td>
<td>9 yrs</td>
<td>$8,000</td>
</tr>
<tr>
<td>Poor</td>
<td>2”-3” Overlay</td>
<td>14 yrs</td>
<td>$12,000</td>
</tr>
<tr>
<td>Very Poor</td>
<td>Thk. Overlay</td>
<td>17 yrs</td>
<td>$16,000</td>
</tr>
<tr>
<td></td>
<td>Rebuild</td>
<td>40 yrs</td>
<td>$50,000</td>
</tr>
</tbody>
</table>

Years (varies by road section)

Typical Treatment:
- Crack Seal: 2 yrs, $1,500
- Chip Seal: 5 yrs, $5,000
- 1” Overlay: 9 yrs, $8,000
- 2”-3” Overlay: 14 yrs, $12,000
- Thk. Overlay: 17 yrs, $16,000
- Rebuild: 40 yrs, $50,000

Pavement Preservation Conference 2016
NETWORK LEVEL

• How do we divide the money up?
Money Allocations

• Fix-It STIP (Federal Funds)
 – Interstate Paving
 – Region Paving
 – Chip Seals

• Maintenance Program (State Funds)
 – MIM (Interstate quick hit)
 – Low Volume (Chip Seals and Thin Paving)
 – Patching
Interstate Allocation

• Target - minimum 95% fair or better

• Revolving 8 Year Workplan – Update every 2 yrs.
 – Current 4-Year STIP
 – Draft STIP (Years 5 and 6)
 – Future STIP (Years 7 and 8)
 – Shelf Projects
Region Paving – Initial Allocation

1. Forecast conditions one STIP cycle ahead (8 yrs. from data year)
2. Compute % fair or better by Region
3. Compare to target (by Hwy. class)
4. Determine $ needs in each Region to reach target
5. Apply resulting percentages to funds available
Chip Seal Allocations

• STIP – Primary Routes
 – Target Cycle Time – 6-10 years

• Maintenance – Low Volume Secondary
 – District Discretion – up to 80% of their budget
 – Target Cycle Time – 8-14 years
NETWORK LEVEL

• How do we divide the money up?
• What projects should we do, and what year?
Fix-It STIP Paving Program

• Timeline – Data to Construction – 6 years!
• Use PMS to develop initial priority list
 – Project conditions 6 years ahead
 – Look to paving where chip seals, crack sealing, or patching is not viable option or will no longer work
 – Priority to higher classes / traffic highways
 – Priority to projects with higher cost effectiveness
Fix-It STIP Paving Program

• Regional preservation team (led by DM’s)
 – Do road tour
 – Factor in regional and local issues, other work, etc.
 – Prioritize list for scoping
150% List

1. Start with Road Tour Priority List
2. Field Scope ≈200% of Initial Allocation
3. Refine Cost Estimates
 – Investigate differences - planning $ vs. scope $
4. Cut to 150% list
New Trial Process 150% → 100%

Applies to Pavement and Bridge Program

<table>
<thead>
<tr>
<th>Score 1-5 for Each of these Factors</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Classification, ADT, Truck ADT</td>
<td>25%</td>
</tr>
<tr>
<td>Cost Effectiveness, Delay Risk</td>
<td>25%</td>
</tr>
<tr>
<td>Program Priority</td>
<td>25%</td>
</tr>
<tr>
<td>Region Priority</td>
<td>25%</td>
</tr>
</tbody>
</table>
Classification Points

<table>
<thead>
<tr>
<th>Classification</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate</td>
<td>5</td>
</tr>
<tr>
<td>OTIA or Seismic Lifeline</td>
<td>4</td>
</tr>
<tr>
<td>State Class Route or NHS</td>
<td>3</td>
</tr>
<tr>
<td>Regional Class Route</td>
<td>2</td>
</tr>
<tr>
<td>District Class or Other</td>
<td>1</td>
</tr>
<tr>
<td>Traffic Level (ADT)</td>
<td>Score</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>> 10,000</td>
<td>5</td>
</tr>
<tr>
<td>> 4,000 to <=10,000</td>
<td>4</td>
</tr>
<tr>
<td>> 1,500 to <= 4,000</td>
<td>3</td>
</tr>
<tr>
<td>> 500 to <=1,500</td>
<td>2</td>
</tr>
<tr>
<td><=500</td>
<td>1</td>
</tr>
</tbody>
</table>
Truck ADT Points

<table>
<thead>
<tr>
<th>Truck ADT</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1,200</td>
<td>5</td>
</tr>
<tr>
<td>>600 to <= 1,200</td>
<td>4</td>
</tr>
<tr>
<td>>300 to <= 600</td>
<td>3</td>
</tr>
<tr>
<td>>100 to <= 300</td>
<td>2</td>
</tr>
<tr>
<td><=100</td>
<td>1</td>
</tr>
</tbody>
</table>
Cost Effectiveness

<table>
<thead>
<tr>
<th>$ / Lane Mile / Year</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><= $10,000</td>
<td>5</td>
</tr>
<tr>
<td>>$10,000 to <= $15,000</td>
<td>4</td>
</tr>
<tr>
<td>>$15,000 to <= $20,000</td>
<td>3</td>
</tr>
<tr>
<td>>$20,000 to <= $40,000</td>
<td>2</td>
</tr>
<tr>
<td>>$40,000</td>
<td>1</td>
</tr>
</tbody>
</table>
Delay Risk

• Score 1 to 5
• Looks at Consequence of Delay beyond STIP
 – Maintenance Cost / Risk
 – Pavement Repair Cost Risk (missing the window)
Program Priority (1 to 5)

• Pavement Program Manager (yours truly) allotted 3 points per project

• Favor Projects which....
• Help performance measure achieve target
• Maximize benefit to the pavement and/or reduce maintenance requirements and costs
• Maximize long term pavement service life
• Provide safety benefits (i.e. rutting or pothole / failed pavement hazards / friction issues)
• Improve poor smoothness on routes with higher traffic speeds and freight movements
• Address severe raveling / degradation of driving surface too widespread for patching
• Minimize repetitive, reactive “throw away” maintenance costs
• Treat the disease rather than doing “short term fixes” that temporarily treat symptoms
• Have negative impacts if treatment is deferred beyond the STIP period
Region Priority (1 to 5)

- Regions Allotted 3 points per project
- Suggested criteria include, but not limited to:
 - Maintenance Impact
 - Community Impacts (economics, travel time, freight & modal impacts, etc.)
 - Safety Impact
 - Detour or alternative route availability
 - Project Delivery Staffing implications
100% List

1. Combine Bridge and Pavement project in one list
2. Rank by total weighted scores
3. Send to Highway Management Team
 – use results to set final Bridge/Pavement funding levels
 – use results for regional paving splits
 – use results for initial 100% project list
NETWORK LEVEL

• How do we divide the money up?
• What projects should we do, and what year?
• Are there bundling opportunities?
• Are there leveraging opportunities?
100% List → Final

• Start with 100% list
• Option to swap projects (leverage enhance)
 – Swap must be from the 150% list
 – Program Manager and District Manager must approve
• Shelf Program – develop from unselected projects
PROJECT LEVEL

• What is this road section made of?
 – Last resurfacing When? What? How thick?
Pavement History

SECTION: US 30 : LEG TO BEAVER FALLS RD - SWEDETOWN RD
SEAL:
AGE:
PVMT TYPE: DGAC THIN OVLY A
WC: B-MIX
AGE: 19

CONSTRUCTION HISTORY

DATE THKN MTRL THKN MTRL THKN MTRL CPPR THKN BASE THKN SUB
1995 2 B
COMMENTS: Pres list, 58.0-60.7 (1992) 2" inly in climbing lane
1972 1.5 B 1.5 B
COMMENTS:
1954 1.5 B 2 B 2 AG 16 AG 5V-026 C04172
COMMENTS:

HWY NO: 092
BEGIN MP: 54.50
ENDING MP: 60.94
LENGTH: 6.44
REGION: 2

V-FILE 00V-226 C11477
CON # 10V-289 C07716

National Pavement Preservation Conference 2016
1995 00V-226

1972 10V-289

1954 5V-026

Total via Plans:
8.5” DGAC
4” Agg. Base
15”-19” Subbase
Mix Design Database

<table>
<thead>
<tr>
<th>Year</th>
<th>US Route</th>
<th>Location</th>
<th>Milepost</th>
<th>Type</th>
<th>Mix Properties</th>
<th>Volumetric Properties as Built</th>
<th>Asphalt Mix Gradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>US 30</td>
<td>Columbia County Line</td>
<td>61.70</td>
<td>Wearing Base</td>
<td>100 Number of Gyrations, 1/2" Dense Mix</td>
<td>Effective binder content (%)</td>
<td>% Retained 3/4"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.0013</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air voids (%)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total unit weight (pcf)</td>
<td>147.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% Retained 3/8"</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% Retained #4</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% Passing #200</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tensile Strength Ratio</td>
<td>93</td>
</tr>
</tbody>
</table>
PROJECT LEVEL

• What is this road section made of?
 – Last resurfacing When? What? How thick?

• Performance?
 – How well has this section performed?
21 yrs since last ovly (2” DGAC)
Overall Condition = 29
39% fatigue cracking (by length)
27% patching
Avg. IRI = 117 in/mi
Avg. Rut = 0.3”

ADT = 8,000
20 Yr ESAL’s = 5 million
Performance Over Time

Condition History

<table>
<thead>
<tr>
<th>Year</th>
<th>Rating</th>
<th>RUT</th>
<th>IRk</th>
<th>SKID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>51</td>
<td>0.43</td>
<td>127</td>
<td>55</td>
</tr>
<tr>
<td>1995</td>
<td>100</td>
<td>0.23</td>
<td>101</td>
<td>49</td>
</tr>
<tr>
<td>1996</td>
<td>98</td>
<td>0.22</td>
<td>100</td>
<td>49</td>
</tr>
<tr>
<td>1997</td>
<td>98</td>
<td>0.22</td>
<td>87</td>
<td>47</td>
</tr>
<tr>
<td>1998</td>
<td>94</td>
<td>0.21</td>
<td>87</td>
<td>49</td>
</tr>
<tr>
<td>1999</td>
<td>94</td>
<td>0.22</td>
<td>89</td>
<td>45</td>
</tr>
<tr>
<td>2000</td>
<td>88</td>
<td>0.27</td>
<td>96</td>
<td>50</td>
</tr>
<tr>
<td>2001</td>
<td>86</td>
<td>0.29</td>
<td>110</td>
<td>53</td>
</tr>
<tr>
<td>2002</td>
<td>77</td>
<td>0.31</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>60</td>
<td>0.27</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Condition Graph

![Graph showing performance over time](image-url)
PROJECT LEVEL

• What is this road section made of?
 – Last resurfacing When? What? How thick?

• Performance?
 – How well has this section performed?
 – How have other projects like the one we are planning to do been performing?
Nearby Project - Context

9 yrs since last ovly (3”)
Overall Condition = 96
0% cracking
Avg. IRI = 58 in/mi
Avg. Rut = 0.2”
ADT = 6,000
20 Yr ESAL’s = 5 million

Total via Plans:
8.5” DGAC
10” Agg. Base
18” Subbase
PMS Data has Lessons

• PMS data is the **feedback tool** for evaluating previous decisions that have been made

• PMS data can be an important **knowledge transfer** tool for future road managers

“Those who fail to learn from history are doomed to repeat it”

George Santayana
John Coplantz
Pavement Management Engineer

Oregon Dept. of Transportation
Pavement Services Unit
800 Airport Road
Salem, OR 97301
503-986-3119
john.s.coplantz@odot.state.or.us