Integrating the Rolling Wheel Deflectometer (RWD) into Pavement Management to Support an Effective Pavement Preservation Program

Curt A. Beckemeyer, P.E.
Sr. Vice President
Presentation Outline

Background
Study Objectives and Purpose
Data Collection
Pavement Management Analysis
Findings
Conclusions
New Developments
The RWD

• **System**
 – Laser-based system
 – 18-kip, single-axle, dual-tire

• **Operation**
 – Operates at posted speeds
 – No lane closures

• **Measurements**
 – Spatially-coincident method
 – Averages deflections over 0.1-mile intervals
Key Design Features

- Trailer
- Wheels
- Beam
- Lasers
- Calibration
- Software

Reference beam and spot lasers

Laser between dual tires
A₁, B₁ and C₁ establish the baseline for comparison to B₂, C₂ and D₂
RWD Role in Pavement Management

Network-Level

- PQI
- IRI
- RWD

1,000s of lane-miles

Project-Level

Preservation

- FWD

Rehabilitation or Reconstruction

- Coring
- Lab

Dozens of lane-miles

FHWA Case Study - Oklahoma

- **Evaluate** the benefits of integrating RWD data into PMS
- **Compare** results with and without RWD data
 - Treatment selection
 - Costs
 - Performance
Test Roads

• Test Network
 – 1,000 miles (ODOT D-5)
 – Primarily flexible pavements
 – Wide range of functional classifications/traffic

• Data Collection
 – Continuous data collection
 – Averaged data at 0.1-mile intervals
 – Testing duration: 4.5 days
Agency PMS Data

• **Condition**
 - Pavement Quality Index (PQI):
 - Ride quality
 - Rutting
 - Distress
 - Structural condition
 - FWD data (interstate only)
 - Structural rating (subjective)

• **Composition / Use**
 - Pavement age
 - Layer types and thicknesses
 - Classification, traffic (ADT)
Agency PMS Methodology

- Software
 - Deighton software (dTIMS)

- Performance Modeling
 - Defined sectioning
 - Performance models for each pavement type

- Decision Models
 - Decision trees → PQI, traffic, and structural condition
 - 3 Treatment categories → Preservation, rehab, replacement
Approach

• Evaluate multiple M&R treatment strategies
 – Base strategy: PQI only
 – Two modified strategies: add RWD data

• Compare results
 – Costs
 – Performance (in terms of PQI)
PQI Only – Treatment Matrix

- **Preservation**
- **Rehabilitation**
- **Replacement**
RWD #1 – Treatment Matrix

Traffic → RWD

PRESERVATION

REHABILITATION

REPLACEMENT

PQI

Low

Medium

High

L M H

L M H

L M H
RWD #2 – Treatment Matrix

Traffic →
RWD →

PRESERVATION

REHABILITATION

REPLACEMENT

Traffic

Low
L M H

Medium
L M H

High
L M H

45
55
65
75
88

80
60
Results

<table>
<thead>
<tr>
<th>Budget Scenario</th>
<th>Percent change in cost (relative to “PQI Only” base case)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PQI Only</td>
</tr>
<tr>
<td>Target PQI = 92</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Conclusions

• RWD allows broader, more reliable use of pavement preservation
 – Identifies roads in **GOOD** & **FAIR** structural condition
 – Prevent PP use on roads in **POOR** structural condition

• Cost savings can be significant
 – In the range of 5 to 10%, in many cases
 – Depends on agency’s current strategy and road conditions
Recent Advancements in RWD Technology
RWD-Vision (cameras vs lasers)

LED Lights

Lights Between Tires

18-kip load

Cameras
RWD-Vision, cont.

- Right Wheel Path - Laser RWD (old)
- Left Wheel Path – RWD-Vision (new)
 - High Speed LED based Flash
 - 2 Camera Positions
Basic Methodology

Image 1 (undeflected pavement)

Undeflected Region
Methodology, cont.

Image 2 (same location as image 1, but under load)

Undeflected area

Deflected Region
Stereo-Pair Image Processing

RWD-Vision deflection measurements (in camera images)

RWD-Vision deflection contour (on pavement surface)
Area = 3.9 ft²
Comparison with in-Pavement Sensors

Maximum Deflection, mils

Station, feet
Thank You!