Georgia DOT Micro-milling and Thin Overlay

Presented by

Yichang (James) Tsai, Ph.D., P.E., Professor Georgia Institute of Technology

Erany Robinson-Perry, P.E., Assistant State Maintenance Engineer Georgia Department of Transportation

October 12, 2016

Acknowledgement

Georgia Department of Transportation
US Department of Transportation

Outline

- Micro milling and its advantages
- Motivation
- Objectives
- Procedures of micro-milling and thin overlay
- Long-term benefit cost analysis of micro-milling and thin overlay
- Conclusions
- Moving forward

What is micro-milling?

A micro-milling operation can produce fine and smooth texture on the milled surface because of the dense spacing and the large numbers of teeth on the milling drum.

Advantages of Micro-milling

Micro-milling offers several advantages over conventional milling:

- Improve smoothness, safety, and comfort
- Improve work flexibility
- Improve overlay quality
- Save materials and costs

Motivation

- GDOT is actively searching for new pavement preservation methods
- In 2007, GDOT challenged its common practices for preserving its interstate highways and developed a new pavement preservation alternative, which can cost-effectively replace only the deteriorated thin open-graded top surface layer (3/4" to 8/7") without removing the large sound underlying layer.
- Unlike Virginia and Maryland, to only provide good ride quality using micromilling, GDOT uses the micro-milling with thin overlay.
- It micro mills only 7/8" of the top OGFC and inlay 7/8" of OGFC without disturbing the underlying SMA and base that are still LARGELY sound.
- The estimated savings compared to the traditional pavement preservation method is more than <u>\$60,000 per lane mile</u>.
- Savings on I-95 project: 14 miles * 6 lanes * \$60,000 = \$5,040,000

New Method: Micro-milling & Thin Overlay

Conventional Method

Micro-milling & Thin Overlay

A: 7/8" OGFC or 1 ¹/4" PEM B: 1.5" SMA C: Asphaltic Concrete "B" - 2 in (19 mm) D: Asphaltic Concrete Base - 4 in (25 mm)

E: Graded Aggregate Base-(GAB) - 10 in

Successful Implementation

- To ensure a successfully implement of the new method, GDOT, working with Ga Tech, developed new processes.
 - Construction procedure, including pre-treatment, micromilling, cleaning, etc.
 - A 1000-ft test section was used for adjusting Micro-milling operation, such as milling speed and milling drum speed (revolution per minute, RPM), to achieve the required quality on the milled pavement surface.
 - An Ridge-to-Valley Depth (RVD) indicator was developed to quantitatively evaluate the micromilled pavement surface texture.
 - An automatic RVD measuring method for effective, real-time quality acceptance. GDOT's Road Laster Profiler was retrofitted to provide a fast, continuous measure of RVD on the micro-milled pavement surface before paving to ensure the quality and provide real-time feedback.
 - Quality acceptance requirements are specified in GDOT Special Provision Section 432 "Mill Asphaltic Concrete Pavement (Micro-Mill)."

Micro-milling & Thin Overlay Projects

- ✓ 96 lane-mile I-75 in 2007
- ✓ 100 lane-mile on I-95 in 2011
- ✓ 100 lane-miles on I-285 in 2012

Innovation of New Method

- New pavement layer design
- Enhanced new micro-milling operations to generate the desirable surface texture, etc.
- New performance indicator, Ridge-to-Valley (RVD), for micro-milled surface
- Enhanced sensing device to measure RVD for construction quality control.
- A new specification has been developed.

Key Research Questions

- A new pavement preservation technology (Micro-milling and thin overlay) has been developed. It saves more than \$5 million on material cost only for a 16 centerline miles of interstate highway (96 lane miles).
- Key questions: (compared to the conventional method)
 - What is the actual performance/life?
 - What is the long-term benefit cost ?

Objectives

- To present the procedures of micro milling and thin overly.
- To critically evaluate the long-term performance and the long-term benefit cost of the new pavement preservation method (micro milling and thin overlay). a new pavement preservation method (micro-milling and thin overlay).

Procedures of Micro milling and Thin overlay

Conventional Mill vs. Refined Micro-mill

6

Laser Setup for 7/8" Milling

Milling of 7/8" OGFC

Cleaning of Milled Surface

Quality Assurance ad Quality Control

Micro-milling Quality Control

Run IRI and RVD for every 0.5 miles

0 0 -2

DATE COLLECTED: 11/09/2010			TIME COLLECTED: 977\sR040500.P08 ROUTE: OBERATOR:		12:24	4:16					
COUNTY: 29		SR			*******	****					
DRIVER:	IVER: VARYANANANAN IVER: VARYANANANAN IVER: 402–0299 JN TYPE: General OF LANES: 5 DNTRACTOR #: 2PL500		VEHICLE: WEATHER COND: DISTRICT: CONTRACT ID #: LANE TESTED:		DC /7	PC/76					
RUN TYPE:					5						
CONTRACTOR #:					1	DI3309-09-500-0					
STAGE OF CONSTRUCTION: PROGRESS			SURFACE TYPE:		D MILL) MILLING					
Miles		MM/KM		MM			мм	MM			
From	то	Rougn Dist	IRI 1	IRI 2	HCS IRI	MPD	% Error	RVD	95% RVD	Text	Pos
86.500 87.000*	87.000	0.50	647 714	802	547	1.312	1.300	3.113	4.495		1
87.500* 88.000	88.000 88.325	0.47 0.33	700 721	865 748	590 563	0.811	1.343	2.001	3.060		1 1 1

Ridge-To-Valley (RVD)

2 0 -2

Micro-milled Surface Texture

Smooth Section

Rough Section

Travel Direction

Travel Direction

What Are Actual RVD Distributions?

1' by 1' Micro-milling Sample for Detailed Texture Analysis

LONG-TERM BENEFIT COST ANALYSIS OF MICRO-MILLING AND THIN OVERLAY (CASE STUDY ON I-75)

24

Project Description

- I-75 near Perry, GA
- 15.3 miles
- 6 lanes
- 46,000 AADT (25% of truck)

(a) Project location

(c) Yearly traffic

Pavement Design

- JPCP in 1964
- AC overlay in 1994
- Micro-milling & thin overlay in 2007

Performance: COPACES (Rating)

 Fairly good condition in 2015 (8 years after micromilling and thin overlay) with a rating of 85 (typically a rating of 70 triggers resurfacing)

Performance: COPACES (Distresses)

- Reflective Cracking: 4 years after micro-milling & thin overlay
- Raveling: 6 years after micro-milling & thin overlay

Pavement Distresses: 3D Pavement Data

Data collected in July 2014

Comparable Service Life!

- Anticipate another 2-3 years
- New method: 10 + years
- Conventional method: 10-12 years

Cost Effectiveness Analysis

Item	New Method (I-75 Project Cost 2006-2007)	Conventional Method ^{1&2} (Mean Item Cost 2006-2007)
Service interval	10 years	12 years
Discount rate	4%	4%
PEM	\$50,500	\$50,500
SMA	\$O	\$62,400
Micro-milling3	\$47,500	\$0
Conventional Milling (2 ³ / ₄ ")	\$O	\$34,600
Total Cost (per lane-mile)	\$98,000	\$147,600
Equivalent Uniform Annual Cost	\$12,000	\$18,200

Notes:

- 1. The costs include material, labor, and equipment.
- 2. The unit cost is based on Mean Item cost 2006-2007.
- 3. The unit cost is based on a weighted average (by quantity) of GDOT's micro-milling projects

Estimated saving on Georgia's interstate system (assuming 1300 centerline miles with 6 lanes in each mile): ~480 million

Conclusions

- The new method, micro-milling & thin overlay, has been proved to be cost-effective.
- Case study shows the new method has a service life of 10+ years, comparable to that of the conventional method (10-12 years).
- Estimated saving on Georgia's interstate system over a 10-year life cycle is \$480 million over the conventional method.
- Other benefits observed include:
 - Reduced the recycled material
 - Environmental friendly
 - Less traffic congestion during construction
 - Improved safety during construction

Moving Forward

- Incorporate this new method into GDOT's life cycle pavement preservation practices and management.
- Study the criteria for micro-milling & thin-overlay (i.e., conditions are suitable for this method?) to have broader application.
- Develop pre-treatment methods (e.g., crack sealing or filling with different materials) for different prior pavement conditions, especially for low-severity cracks.
- Quantify the environmental impact and sustainability benefits of the proposed method.
- Establish a national standard and specification on this new pavement preservation technology.

Q/A

