Evaluating Effect of Preservation Treatments on Pavement Performance and Service Life

James Bryce & Gonzalo Rada Amec Foster Wheeler

National Pavement Preservation Conference Nashville, TN October 13, 2016

Outline

- Background
- Performance measures
- Modeling the effects of preservation
 - Performance
 - Service Life
 - Life Cycle Costs
- Conclusions

Background

 Based on research conducted under NCHRP Project 14-33 to:

> Identify and/or develop pavement performance measures that consider contributions of preservation to performance, service life, and life-cycle costs

Prepare guide document to facilitate implementation of measures by highway agencies

Background, Cont'd

- Preservation treatments are applied to:
 - Preserve an existing roadway
 - Slow future deterioration
 - Maintain and improve its functional condition
- No substantial increase to structural capacity of pavement

Performance measures provide means for assessing effectiveness of preservation

Background, Cont'd

- Considerable amount of literature
 - Mamlouk and Dosa (2014) show performance of chip seal is function of initial condition and climate
 - Carvalho et al. (2011) compared control and treatment sections from SPS-3 study in LTPP database
 - Pierce and Muench (2009) evaluated long-term effect of DBR in State of Washington

Data does exist to support performance evaluation (LTPP and State PMS)

Performance Measures

Defined as:

Metrics that reflect degree of achievement of pavement asset towards meeting specific goals

- Evaluation of current condition of pavements
- Long-term trends in pavement condition
- Assessment of decisions made to achieve specific goals (e.g., minimize LCC)

Performance Measures, Cont'd

- Many measures in current use
 - Individual distresses
 - Composite indexes
 - Cost based
 - e.g., Asset Sustainability Index, etc.
 - Others

> e.g., friction, Remaining Service Interval, etc.

Performance Measures, Cont'd

- For the purposes of this presentation
 - Demonstrate; cracking, roughness (IRI), rutting (AC) and faulting (PCC)

> Why?

- Measured by most agencies,
- Required HPMS elements,
- NPRM resulting from MAP-21
- Captures many decision factors

Modeling Effects of Preservation Treatments

- Assessed:
 - Immediate change in condition
 - Changes in performance
- Use data to assess effects of preservation
 on service life and LCC
- Data from State agencies and LTPP
 program will be presented

Change in condition modeled as a function of initial values of performance measures

Considerable variance in both dependent and independent variables

Used Deming Regression to account for this

Accounting for errors in condition data

Examples: assessing change in IRI

Examples: assessing change in IRI

Modeling Effects of Preservation, Cont'd Effect of variance in data

Modeling Effects of Preservation

Change in performance – function of many variables

 Robust regression used to model distress growth over time for each segment

Used to account for potential outliers

Examples: assessing change in rutting performance

Examples: assessing change in performance

Transverse Crack Growth Rate as a Function of Many Variables

Examples: assessing change in rutting

Rut Growth Rate Following Thin Overlay Using LTPP Data

Function of precipitation, freeze-thaw cycles, Average Temperature ESALS & Structural Number

Pavement Type and Preservation Treatment	Roughness (IRI)		Cracking (at least one cracking Type)		Rutting				
	Initial Cond. Change	Long- Term Perf.	Initial Cond. Change	Long- Term Perf.	Initial Cond. Change	Long- Term Perf.			
Asphalt Pavements									
Thin Asphalt Overlay	Both	LTPP	Both	Both	Both	State DOT			
Chip Seal	None	LTPP	Both	Both	None	None			
Micro Surfacing	None	DNA	Both	DNA	DNA	DNA			

- Changes in immediate condition and performance can be used to assess:
 - Effect of preservation on service life
 - Effect of preservation on life cycle costs

Example using State data to calculate change in service life and LCC following a thin overlay – using only IRI as performance measure

- IRI performance model from agency $IRI(t) = 40e^{0.05t}$
- Change in condition calculated using agency data
- No change in performance found from data
- Compare service life and equivalent annual uniform costs for 3 pavements with differing initial IRI values: 85, 100 and 115 in/mile

Initial	Effective Pavement	IRI After	Effective Pavement	Effective Age	Life
IRI	Age When OL is	Overlay	Age After Overlay	When IRI of 120	Extension
(in/mile)	Applied (years)	(in/mile)	(years)	in/mile is Reached	(years)
85	15.1	72.5	11.9	25.9	3.9
100	18.3	74.0	12.3	28.9	6.7
115	21.1	75.5	12.7	31.0	9.1

$$EUAC = Cost \frac{r * (1+r)^t}{(1+r)^t - 1}$$

r = discount rate (3 percent)
t = analysis period (varies)

$$EUAC_{85} = $20,715$$

$$EUAC_{100} = \$12,506$$

$$EUAC_{115} = \$9,577$$

Conclusions

- Many agencies collect and store data required to assess effectiveness of preservation. Other sources of data (e.g., LTPP) can be used to supplement agency data
- Analysis of pavement condition data requires techniques not traditionally in pavement literature
- Definition and implementation of performance measures, including development of models, are key steps for evaluating effects of preservation treatments

Thank You!

- James Bryce, Ph.D.
- Senior Consultant, Amec Foster Wheeler,
- 12000 Indian Creek Court, Beltsville MD, 20705
- 1 (301) 210 5105 ext. 36
- Email: James.Bryce@amecfw.com

