Preservation and Quality of Life, Framework and Examples

John Harvey University of California Pavement Research Center

Overview

- Preliminary framework for quality of life and pavement
- Some examples
 - Tire/pavement noise
 - Heat island
 - Bicycle ride quality

What affects quality of life?

- Already considered in PMS, LCCA:
 - Safety
 - Ability to access essential services
 - Health care
 - Nutrition
 - Education
 - Social access
 - Recreation

Cost and comfort of access in motor vehicles

What affects quality of life?

- Not generally considered in current systems:
 Noise
 - Active transportation
 - Ride quality
 - Safety
 - Thermal comfort
- What else?

• \$1.3+ million per mile

- Maintenance problems (graffiti) \$100k/yr
- Can not be used everywhere
- Limit future highway expansion
- Not necessarily effective
- Block views

Figure 1.1: Timeline of completed data collection periods for asphalt and concrete pavement noise studies.

Instrumented car measures OBSI, IRI and macro-texture

Pavement Test Vehicl

Asphalt test sections:

Experiment Design

- Factorial experiment: 54 QP sections
 - Four mix types: dense-graded (DGAC) as control, opengraded (OGAC), rubberized open-graded (RAC-O), rubberized gap-graded (RAC-G)
 - Three age categories: < 1 year; 1-4 years; 4-8 years
 - Two traffic levels (low is < 32,000 ADT)
 - Two rainfall regions (low is < 24 inches/year)
 - Partial factorial for F-mixes, 19 mm open-graded
- Not controlled:
 - Maximum aggregate size (9, 12.5, 19 mm)
 - Polymer vs conventional binders in OGAC

Depric 16 National Pavement Preservation Conference 2016

OBSI for each age category over 6 years

<1

1-4

>4

Age

Category <1

1 - 4

>4

<1

1 - 4

>4

<1 1-4

>4

Overall distribution of OBSI up to 15 years old

Performance model estimates of time to

noise failure (same noise as DGAC)

Traffic	Climate	HMA	OGAC	RAC-G	RAC-O
High Traffic (TI=12)	Low Rainfall/ High Temperature	-	9	5	15
	Moderate Rainfall/ Low Temperature	-	9	8	14
	High Rainfall/ Moderate Temperature	-	8	6	14
	Moderate Rainfall/ Moderate Temperature	-	9	6	13
Low Traffic (TI=9)	Low Rainfall/ High Temperature	-	9	6	14
	Moderate Rainfall/ Low Temperature	-	10	9	13
	High Rainfall/ Moderate Temperature	-	11	7	13
	Moderate Rainfall/ Moderate Temperature	-	10	7	14

Performance model estimates of time to

|--|

Traffic	Climate	HMA	OGAC	RAC-G	RAC-O
High Traffic (TI=12)	Low Rainfall/ High Temperature	15	17	15	18
	Moderate Rainfall/ Low Temperature	9	11	8	16
	High Rainfall/ Moderate Temperature	8	11	11	16
	Moderate Rainfall/ Moderate Temperature	9	12	10	16
Low Traffic (TI=9)	Low Rainfall/ High Temperature	12	17	15	18
	Moderate Rainfall/ Low Temperature	10	12	11	16
	High Rainfall/ Moderate Temperature	11	12	10	15
	Moderate Rainfall/ Moderate Temperature	10	12	11	15

New quieter small stone open-graded asphalt

- Based on field and lab studies
 - Smaller maximum aggregate size, less positive texture
 - Permeability of open-graded mixes

Figure 4.12: 1/3 octave band noise content for the four mixes.

Figure 9.1: Examples of residual specimens after Cantabro testing of the different OGFC mixes. (Note that each original specimen had a diameter of 4 inches [100 mm].)

Comparison with current Caltrans open-graded mix

- New smaller stone mixes are
 - More durable (Cantabro)
 - Quieter (35 mph OBSI)
 - Similar or slightly less friction
 - Similar or slightly less permeability

Predicting OGAC noise in the Lab

• Goal:

 Include prediction of initial noise performance in the laboratory as part of mix design

Lab air permeability

MPD

Direction of Flow

Asphalt Summary

- Use of rubberized open graded recommended
 - Based on long-term noise, smoothness and permeability performance of current mixes
- Method of estimating field noise in the lab developed
- New quieter mixes developed based on findings

 Need field validation

Depric 16 National Pavement Preservation Conference 2016

Concrete test sections:

NCPTC Results 2010

Figure 5.7: Probability distributions of OBSI noise levels for concrete pavement textures as reported by the National Concrete Pavement Technology Center in 2010 (10).

e 2016

UCPRC Results 2013

Grind and groove

Types of heat island

- Urban heat island
 - CARB, Caltrans sponsored study
 - Response to legislation
 - Report and software publish late 2016
- Results of changing HMA/slurries to reflective surfaces
 - Small change in temperature, long time to implement
 - Net effect of change dominated by materials production, generally not beneficial

Depric 16 National Pavement Preservation Conference 2016

Types of heat island

- Local heat island
 - Effect on human thermal comfort
 - Balance reflectivity, evapo-transpiration, shade
 - UCPRC, USC and other research

Thermal Impact of Reflection

65.0

30.0

Asphalt (B1), 60 °C

Dist = 1.0 Trefl = 20.0 ε = 0.95 12-08-15 13:01

Wall, 52 °C

°C

13:00 8/15/2012 Lighter is hotter: legend range of 30 to 65 °C

Concrete (C1), 45 °C

Dist = 1.0 Trefl = 20.0ϵ = 0.95 12-08-15 13:05 National Pavement Preservation Conference 2016 30.0

65.0

Preservation and Bicycle Riders

- Develop guidelines for design of preservation treatments suitable for bicycle routes on state highways and local streets in California
- Pavement texture measurements
- Bicycle vibration measurements
- Surveys of bicycle ride quality
 - 6 bicycle clubs
 - General public in Davis, Richmond, Chico, Sacramento, Reno

Example 3D Macrotexture Images of MPD

Length (in)

Conclusions from Bicycle Studies

- 80% of riders rate pavements with Mean Profile Depth values
 1.8 mm or less as acceptable, limit chip stone size
- Most slurries on city streets produce high acceptability
- Distresses, particularly cracking, reduces ride quality
- Chip seal spec recommendations in Caltrans report
- Can be included in PMS
- Consider "Complete Pavement"

How to consider these preservation criteria?

- Collect the data
- Policy
- Consider in PMS prioritization and treatment identification
- Include in standard project design criteria
- First need to have knowledge and data

FHWA Towards Sustainable Pavements

Reference Document

- State of the knowledge
- Search on "FHWA pavement sustainability"
- Also at web site
 - Tech briefs
 - Literature database

f Transportation ederal Highway dministration

Towards Sustainable Pavement Systems: A Reference Document

FHWA-HIF-<mark>1</mark>5-002

Acknowledgements

- Most of this work was sponsored by the California Department of Transportation and California Air Resources Board, whose support is gratefully acknowledged
- These results do not constitute a standard or specification
- The opinions expressed in this presentation are those of the authors only
- This work is a collaboration with colleagues at UCPRC (Davis and Berkeley), LBNL, USC, Oregon State U and Caltrans

Questions: jtharvey@ucdavis.edu www.ucprc.ucdavis.edu • All reports downloadable