Concrete Pavement Preservation Essentials

(Giving New Life to Aging Concrete Pavements)

Jerod Gross P.E.
National Concrete Pavement Technology Center
October 12, 2016
Maintaining the Service and Investment of the Highway by Implementing Pavement Management Into Cost-Effective PAVEMENT PRESERVATION MEASURES
Determining Treatment Selection

• Preservation Policy- Stating what the goal is for pavement condition and/or service life.

• In order to select the right treatment, for the right pavement, at the right time, the following information must be compiled and analyzed:
 – Expected performance of the pavement.
 – The treatment and expected costs (initial and life-cycle), both direct (agency costs) and indirect (user costs).
 – Does it meet the goal?
What is Pavement Preservation?

1. Tools to preserve concrete
2. Concrete is a tool for preservation
Pavement Preservation
Tools to Preserve Concrete Pavement

Distressed Concrete Pavement
- Joint/Crack Resealing
- Grooving
- Diamond Grinding
- Tied PCC Shoulders
- Cross-Stitching
- Dowel Bar Retrofit
- Full-Depth Repair
- Partial-Depth Repair
- Retrofit Edge Drains
- Slab Stabilization

Not all projects will require every procedure, but the sequence should be maintained.

Restored Concrete Pavement
Pavement Preservation
Concrete is a Tool for Preservation

Bonded overlays (BCOC & BCOA) ≤ 4"
Milling surface distresses and establishing a new bonded surface

• Converts existing pavement from fair/poor to good condition via milling
• Returns pavement to original function
 - Ridability
 - Friction
 - Removes surface distresses
• Extends service life
Pavement Preservation

Bonded Overlays 4” or less

Unbonded Overlays
Pavement Management Concept

Pavement Age

- 40% of life: $X/mile
- 70% of life: $~4X/mile
- 90% of life: $~6-10X/mile
- >90% of life: $>10X/mile
5 Core Questions

1. What is the current state of our pavements?

- What do we own?
- Where is it?
- What condition is it in?
- What is the remaining service life and economic value?

Condition Analysis
2. What is the level of service to be provided?

- What do owners and public expect?
- How different is this from actual conditions?

Involve City Officials
3. What level of deterioration is acceptable?

- How do these assets deteriorate?
- What are the likelihood and consequences of deterioration?
4. What are the feasible options to consider?

- What repair options are most feasible for our agency?
- How do these strategies impact system performance?

Pavement Management Model
5 Core Questions

5. Which long-term funding option should be selected?

- Does the selected strategy align with policy goals?

Pavement Management Model
What Pavement Preservation is Not

- **Worst first**
- **Cover up problems**
Service Life

LONG-TERM PAVEMENT

PDR and/or DG

YES
Service Life

SHORT-TERM PAVEMENT

NO

Investment

Excellent

Good

Fair

Poor

Deteriorated

Years
PAVEMENT PRESERVATION

- BUDGET
- PERFORMANCE CHECK (TRIGGERS)
- PRESERVATION TECHNIQUES
- PRIORITY RANKINGS
- PERFORMANCE MODEL
Trigger/Limit Values for Pavement Preservation (JPCP)

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Trigger Value</th>
<th>Limit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Cracking</td>
<td>1.5% - 2.5% of slabs cracked</td>
<td>5% - 15% of slabs cracked</td>
</tr>
<tr>
<td>Joint Spalling</td>
<td>1.5% - 2.5% of joints</td>
<td>15% - 20% of joints</td>
</tr>
<tr>
<td>Joint Faulting</td>
<td>0.10 inches</td>
<td>0.50-0.70 inches</td>
</tr>
<tr>
<td>Roughness</td>
<td>63-90 in/mi</td>
<td>160-220 in/mi</td>
</tr>
</tbody>
</table>
Table 2.3. Michigan DOT Criteria for Preservation Strategies (Scofield et al. 2011)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Minimum RSL</th>
<th>DI</th>
<th>RQI</th>
<th>IRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDR</td>
<td>7</td>
<td>< 20</td>
<td>< 54</td>
<td>< 107</td>
</tr>
<tr>
<td>Joint Resealing</td>
<td>10</td>
<td>< 15</td>
<td>< 54</td>
<td>< 107</td>
</tr>
<tr>
<td>Crack Sealing</td>
<td>10</td>
<td>< 15</td>
<td>< 54</td>
<td>< 107</td>
</tr>
<tr>
<td>Diamond Grinding</td>
<td>12</td>
<td>< 10</td>
<td>< 54</td>
<td>< 107</td>
</tr>
<tr>
<td>Dowel Bar Retrofit</td>
<td>10</td>
<td>< 15</td>
<td>< 54</td>
<td>< 107</td>
</tr>
<tr>
<td>Concrete Pavement Restoration*</td>
<td>3</td>
<td>< 40</td>
<td>< 80</td>
<td>< 212</td>
</tr>
</tbody>
</table>

*Consists of full-depth concrete repairs, diamond grinding, and other.
RSL: Remaining service life
DI: Distress index
RQI: Ride quality index
IRI: International roughness index
Why Use Performance Models?

- Needs assessment $$
- Multi-year workplans
- Performance models
- Predict condition
- Predict M&R
- What-if analysis
Pavement Condition Index (PCI) Concept

- Distress Type
 - Distress Quantity
 - Distress Severity
 - PCI
 - Excellent
 - Very Good
 - Good
 - Fair
 - Poor
 - Very Poor
 - Failed
Concrete Pavement Preservation Techniques

- Contains 12 Chapters on Preservation Techniques
- Added Overlay Chapter
- Working on 11 Training Modules and Instructor Guide
- Plan on 20 future workshops in next two years.
- Technical Assistance to State DOTs
Slab Stabilization vs. Slab Jacking

- **Slab Stabilization:**
 - Pressure insertion of grout/polyurethane to fill void beneath slab

- **Slab Jacking:**
 - Pressure insertion of grout/polyurethane to raise slab
<table>
<thead>
<tr>
<th>“V” Shape Milling Head and Pattern</th>
<th>Rock Saw and Rounded Pattern</th>
<th>Vertical Edge Mill Head and Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 to 60 degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Investigation

City of West Des Moines

Design

• Plans
• Standard Specification
• Standard detail (MN)

Construction
Full Depth Repairs

New Additions to the Preservation Manual:

- Precast Repairs
- Utility Cuts
- CRCP Guidelines
Retrofitted Edge Drains

New Additions:

• Streamlining of Information
• Importance of Maintenance
Dowel Bar Retrofit

- Restores load transfer
- Reduces probability of pumping, faulting, and corner breaks
- Improves long-term rideability
- Increases service life
New Surface Textures

• Optimized Texture for City Streets (OTCS)
 – Similar to diamond grinding but reduced land heights/widths

• Next Generation Concrete Surface (NGCS)
 – Manufactured, low-noise surface consisting of flush grinding and grooving
Joint Resealing and Crack Sealing

New Additions:

- General Chapter Update
- Improve Troubleshooting
Concrete Overlays

New Additions:

• New Chapter
• Information from 2014 Overlay Guide Update
• Lessons Learned From Projects (2008 to 2014)
THANK YOU!

Representing the National Concrete Pavement Technology Center

http://www.cptechcenter.org/
jgross@snyder-associates.com