



# Protective Coatings for Steel and Concrete Bridge Components

Bobby Meade – Greenman Pedersen Inc., Sudhir Palle – University of Kentucky Theodore Hopwood II – University of Kentucky

## Content from Two Research Studies

#### • KTC-16-03/SPR12-433-1F Thin Film Concrete Coatings

KTC-16-08/SPR14-484-1F
 Chloride Contamination Remediation
 On Steel Bridges

## Action levels for chloride levels of concrete that result in steel corrosion

- 0.03 percent chloride to weight of concrete = initiation of corrosion
- 0.08 percent chloride to weight of concrete = accelerated corrosion
- 0.18 percent chloride to weight of concrete = major section loss of steel

## Changes in Chloride Content in KYTC Bridge Components

- 2002 -bridge decks at the upper mat level were less than 0.01%
- 2011 -bridge decks at the upper mat level were often 0.20% - 0.30%
- 2011 -pier caps and abutment seats were often 0.30% to 0.40% range

# **Result of Increased Chloride Contamination**



# **Result of Increased Chloride Contamination**



# **Result of Increased Chloride Contamination**



## **Research Approach**

- Identify potential thin film coatings
- Minimal system application time requirements
- User friendly
- Evaluate in laboratory (ASTM D4587) and field

# Performance Criteria Evaluated

- Adhesion
- Resistance to chloride transmission
- Color stability
- Gloss retention

| System | Description                                                                                |  |  |
|--------|--------------------------------------------------------------------------------------------|--|--|
| 1      | Two component, high solids, high build, polyamide epoxy, applied in one coat               |  |  |
|        | Two component, polyester modified, aliphatic, acrylic polyurethane, applied in one coat    |  |  |
| 2      | Two component, high solids epoxy, applied in one coat.                                     |  |  |
|        | Single component, water-born acrylic, applied in one coat.                                 |  |  |
| 3      | Single component, water-born acrylic sealer, applied in one coat.                          |  |  |
|        | Single component, elastomeric high build acrylic, applied in one coat.                     |  |  |
| 4      | Single component, waterborne blend of silanes, siloxanes and acrylics, applied in one coat |  |  |
|        | Single component, waterborne, silicon resin coating, applied in two coats                  |  |  |
| 5      | Methyl methacrylate-ethyl acrylate copolymer sealer, applied in two coats                  |  |  |
| 6      | Two component, cycloaliphatic amine epoxy mastic, applied in one coat.                     |  |  |
|        | Two component, Aliphatic Acrylic-Polyester Polyurethane, applied in one coat.              |  |  |
| 7      | Single component, Waterborne Acrylic, applied in one coat.                                 |  |  |
|        | Single component, Modified acrylic terpolymer, applied in one coat.                        |  |  |
| 8      | Two component castor oil/gypsum coating, applied in one coat.                              |  |  |

# **Coating Application**



## **Coating Application**



## **Coating Application**



## **Coating Adhesion - Laboratory**

| System | Pre-<br>exposure | 1,000 hr<br>exposure | 2,000 hr<br>exposure | 3,000 hr<br>exposure |
|--------|------------------|----------------------|----------------------|----------------------|
|        | Psi              | Psi                  | Psi                  | Psi                  |
| 1      | 738              | 798                  | 811                  | 1005                 |
| 2      | 1029             | 915                  | 1120                 | 860                  |
| 3      | 288              | 640                  | 707                  | 636                  |
| 5      | 798              | 697                  | 746                  | 810                  |
| 6      | 1150             | 723                  | 858                  | 754                  |
| 7      | 505              | 625                  | 758                  | 767                  |
| 8      | 283              | 255                  | 230                  | 619                  |

# **Coating Adhesion - Field**

| System | 6 Month |
|--------|---------|
|        | Psi     |
| 1      | 493     |
| 2      | 1452    |
| 3      | 549     |
| 5      | 1128    |
| 6      | 1635    |
| 7      | 551     |
| 8      | 519     |

% Chloride



■ 1/2" ■ 1"

Sample Depth



#### Delta E



■ 1000 hrs ■ 2000 hrs ■ 3000 hrs



#### **60 degree Gloss Readings**



## **Conclusions From Thin Film Concrete Coating**

- Adhesion of coatings and the ability to resist chloride penetration are two characteristics very important for concrete coating performance.
- Systems 1, 2 and 6 perform better in these characteristics than other systems tested.
- Each of these are two-coat systems with epoxy primers. Two systems have urethane top coats and the third has an acrylic top coat.

## **Research Approach**

- Precondition steel panels by cyclic salt fog exposure (ASTM B117)
- Clean the corroded steel panels with candidate surface preparation methods
- Assess the retained chlorides
- Recommend surface preparation methods for KYTC maintenance painting.

## **Test Panel Preconditioning**



## **Test Panel Preconditioning**



## **Test Panel Preconditioning**

Surface roughness of the preconditioned panels was approximately 20 mils and chloride contamination averaged 500 µg/cm<sup>2</sup>.

## **Test Panel Apportionment**



## **Pre-surface Preparation Boiling Extraction**



## **Surface Preparation Methods**

#### Thirty-two surface preparation methods.

Eight dry methods, with combinations of abrasive material (steel grit, mineral slag, glass, and aluminum oxide), abrasive size, and re-blasting (after flash rusting).

#### Twenty-four wet methods, with combinations of water pressure, water abrasive mixes, water temperature, and chemical additives.

## **Surface Cleanliness**



## **Surface Cleanliness**



## **Post-surface Preparation SEM Assessment**



## **Post-surface Preparation SEM Assessment**



### Post Cleaning % Cl<sup>-</sup>



### Post Cleaning Cl<sup>-</sup> Surface Concentration



#### Chemical Water/Abrasive

- 1. Map is 73 mils x 59 mils.
- 2. Spot is 4.7 mils across the horizontal axis.
- 3. Chloride removed 99.1%
- 4. Chloride 6.4 µg/cm<sup>2</sup>



### Chemical Water Jetting



- Map is 50 mils x 37.5 mils.
  Spot is 2.25 mils across the
- horizontal axis.
- 3. Chloride removed 98.5%
- 4. Chloride  $10.3 \,\mu g/cm^2$

### Chemical Steel Grit 40/50

- 1. Map is 49 mils x 37 mils.
- 2. Spot is 3.6 mils across the horizontal axis.
- 3. Chloride removed 98.1%
- 4. Chloride 7.9  $\mu$ g/cm<sup>2</sup>



### Chemical Mineral Slag

- 1. Map is 117 mils x 88 mils.
- Spot is 30.0 mils across the horizontal axis.
- 3. Chloride removed 98.0%
- 4. Chloride  $10.3 \,\mu g/cm^2$



#### 4.8K psi wash, Steel Grit 40/50

- 1. Map is 86 mils x 60 mils.
- 2. Spot is 18.1 mils across the horizontal axis.
- 3. Chloride removed 95.9%
- 4. Chloride 17.1  $\mu$ g/cm<sup>2</sup>



## Conclusions

- Wet surface preparation methods are most effective in remediating chlorides
- Repeated dry abrasive blast cleaning is nearly as effective
- No method tested cleaned to less than 5 µg/cm<sup>2</sup> chloride
- Remaining chlorides are deposited in "hot spots"





## Thank You

#### Contact information for authors

- Bobby.meade@uky.edu
- Sudhir.palle@uky.edu
- Ted.hopwood@uky.edu