Utilizing Unmanned Aircraft Systems (UAS) for Bridge Inspections

Presented by:
Sarah Sondag, MnDOT
Barritt Lovelace, Collins Engineers
Midwest Bridge Preservation Conference
Phase I Project Background

- MnDOT Bridge Office identified Unmanned Aircraft Systems (UAS) as a potential useful technology
- Additional Research Dollars Available
- Project was scoped, funded and completed in two months
Project Team

- Beverly Farraher, MnDOT State Bridge Engineer
- Sarah Zink, MnDOT Office of Bridge and Structures
- Bruce Holdhusen, MnDOT Research Services
- Nancy Daubenberger, MnDOT Engineering Services Division Director
- Cassandra Isackson, MnDOT Office of Aeronautics Services Director
- Tara Kalar, MnDOT Office of Chief Counsel
- Scott Thiesen, MnDOT Office of Bridges and Structures
- Joe Fishbein, MnDOT Office of Bridges and Structures
- Rich Braunig, MnDOT Office of Aeronautics
- Chris Meyer, MnDOT Office of Aeronautics
- Barritt Lovelace, Collins Engineers
- Cory Stuber, Collins Engineers
- Garrett Owens, Collins Engineers
- Terrance Brown, Collins Engineers
- Keven Gambold, Unmanned Experts
- Dave Prall, Unmanned Experts
- Matthew Wichern, Unmanned Experts
- Dan Stong, RDO
- Adam Zylka, Sensefly
Presentation Overview

- Project Scope
- FAA Rules
- Assessment of Current Practices
- Assessment of Phase I and Phase II UAS Technologies
- Project Planning
- Phase I Results
- Phase II Study
- Phase III
- Conclusions and Recommendations
- Public Response
Demonstration Project Scope

• Evaluate UAS safety and effectiveness as it applies to bridge inspection.
• Utilize UAS technology in the inspection of four bridges at various locations throughout Minnesota.
• Investigate UAS effectiveness in improving inspections and reducing inspection costs.
• UAS technologies were investigated to evaluate their capabilities as they relate to bridge inspection.
• Research report written for the MnDOT Research Services Office.
Flight Safety Restrictions

Previous FAA Rules

- Licensed pilot is required to operate the UAS.
- UAS must be operated within line of sight.
- UAS must not be operated within 5 miles of an airport unless prior authorization from the airport operator and the airport air traffic control tower is received
- Cannot fly within 500 ft. of non-participants.
• Remote pilot certificate with small UAS Rating.
 – Pass an aeronautical knowledge test and a TSA background check.
• UAS must be operated within line of sight.
• Operations during daylight and twilight if UAS has lights.
• Cannot fly directly over non-participants.
• Max speed 100 mph; Max height 400 ft.
• Operations in Class B, C, D and E airspace allowed with ATC permission
• Some restrictions can be lifted with an FAA waiver
Assessment of Current Practices

Access Methods
- Aerial Work Platforms (AWP’s)
- Rope Access and Structure Climbing
- Ladders

NBIS and MnDOT Requirements
- Hands On Inspection
- Non Hands on Inspection
- Measurements/Testing
Assessment of UAS Technology

- **Phase I Technology**
 - Not capable of looking up
 - Unable to fly without GPS
 - Photo, Video and Thermal Imaging

- **Phase II Technology**
 - Inspection-specific UAS
 - Object Sensing
 - Capable of looking up
 - Fly without GPS, under bridge decks
 - Photo, Video and Thermal Imaging
Project Planning

Approvals

• Governors Office
• FAA
 – 333 Exemption
 – Certificate of Authorization
• MnDOT Aeronautics
• National Park Service
• CN Railway
• Bridge Owners Coordination
Project Planning

Bridge Selection Criteria

• Rural vs. Urban
• Variety of Bridge Sizes
• Variety of Bridge Types
• Bridge Location
• Bridge Owner Cooperation
• Limit Public Contact
Bridge Inspection Methods and Results

Bridge 13509 – Chisago County

- Small Local Bridge
- Prestressed Concrete Beam Bridge
- National Park Service Permission
- Unable to Fly Under Bridge
- Infrared Images
- Orthographic Mapping
Bridge Inspection Methods and Results

Table 5-1 Bridge 13589 Inspection Element Table

<table>
<thead>
<tr>
<th>Bridge Element</th>
<th>Condition State</th>
<th>Previous Inspection Note</th>
<th>Discernable from UAV Video/Photo/IR Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>012 Top of Concrete Deck</td>
<td>2852 FT^2 CS 1</td>
<td>25% of Deck</td>
<td>Yes, gravel is clearly visible in photos, now at 50%</td>
</tr>
<tr>
<td>169 Prestressed Concrete Girder or Beam</td>
<td>312 FT CS 1</td>
<td>None</td>
<td>Yes, (fascia's only)</td>
</tr>
<tr>
<td>215 Reinforced Concrete Abutment</td>
<td>72 FT CS 1</td>
<td>None</td>
<td>No, unable to fly under deck</td>
</tr>
<tr>
<td>311 Expansion Bearing</td>
<td>4 EA CS 1</td>
<td>Three anchor bolt nuts missing</td>
<td>No, unable to fly under deck</td>
</tr>
<tr>
<td>313 Fixed Bearing</td>
<td>4 EA CS 1</td>
<td>Five anchor bolt nuts missing</td>
<td>No, unable to fly under deck</td>
</tr>
<tr>
<td>331 Reinforced Concrete Bridge Railing</td>
<td>129 FT CS 1</td>
<td>Minor shrinkage cracks</td>
<td>Yes</td>
</tr>
<tr>
<td>331 Reinforced Concrete Bridge Railing</td>
<td>32 FT CS 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>361 Scour Smart Flag</td>
<td>1 EA CS 1</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>380 Secondary Structural Elements</td>
<td>1 EA CS 1</td>
<td>Steel Diaphragm</td>
<td>No, unable to fly under deck</td>
</tr>
<tr>
<td>387 Reinforced Concrete Wingwall</td>
<td>4 EA CS 1</td>
<td>None</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Bridge Inspection Methods and Results

Bridge 448 – Oronoco Bridge
- Historical Concrete Arch Bridge
- Prestressed Concrete Beam Bridge
- Unable to Fly Under Bridge
- Able to fly in Rain
Bridge Inspection Methods and Results

Table 5-2 Bridge 448 Inspection Element Table

<table>
<thead>
<tr>
<th>Bridge Element</th>
<th>Condition State</th>
<th>Previous Inspection Note</th>
<th>Inspectable from UAV/Video/Photo/IR Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Top of Concrete Deck - BPX</td>
<td>14521 FT CS 1</td>
<td>Deck was chained and no delamination was found.</td>
<td>No, FAA requirements only allowed flight under the level barrier.</td>
</tr>
<tr>
<td>330 Strip Seal Joint</td>
<td>92 FT CS 1</td>
<td>South end: West side 1 3/8", East side 2", North end: West side 1 1/2", East side 1 3/8" at 30 deg.</td>
<td>No, FAA requirements only allowed flight under the level barrier.</td>
</tr>
<tr>
<td>333 Railing</td>
<td>520 FT CS 1</td>
<td>Minor vertical 0.013" cracks in concrete both sides of bridge. The galvanizing on the rail is fading.</td>
<td>Yes</td>
</tr>
<tr>
<td>109 P&S Concrete Girders</td>
<td>409 FT CS 1</td>
<td>North approach span east fascia beam bottom flange has a patched area on the east side of the beam 8" from the north abutment.</td>
<td>Yes</td>
</tr>
<tr>
<td>144 Concrete Arch</td>
<td>229 FT CS 1</td>
<td>Spalls were repaired by MnDOT in July 2014. See history file attachment and photos and notes below.</td>
<td>Yes</td>
</tr>
<tr>
<td>155 Concrete Floorbeam</td>
<td>883 FT CS 1</td>
<td>There is a small delamination and crack in the north side of the center floorbeam against the east arch. The south end of the center floorbeam has small cracks against the arch.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Bridge Inspection Methods and Results

Bridge 49553 – Morrison County Pedestrian Bridge

- Large Steel Truss
- Difficult to access with UBIV
- Great detail in images
- Pack rust visible
- Concrete deterioration visible
Bridge Inspection Methods and Results

Table 5-3 Bridge 49553 Inspection Element Table

<table>
<thead>
<tr>
<th>Bridge Element</th>
<th>Condition</th>
<th>Previous Inspection Note</th>
<th>Discernable from UAV, Video/Photo/IR Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Timber Deck</td>
<td>8450 FT~2 CS 2</td>
<td>Constructed 13' wide x 4' thick x 650' treated timber deck and replaced 33 RR ties. Also placed 2' treated timber wear course.</td>
<td>Yes</td>
</tr>
<tr>
<td>407 Bituminous</td>
<td>2 EA CS 1</td>
<td>Paved 2" bituminous in November, 2006. 8/28/13 - West approach failure repaired by MCHD. Good condition. Erosion on East approach repaired w/ quarry mix riprap.</td>
<td>Yes</td>
</tr>
<tr>
<td>334 Metal Rail</td>
<td>1250 FT CS 1</td>
<td>Placed 1,309 ft coated chain link fence in November, 2006. 8/27/12 - Missing (1) end cap on East end.</td>
<td>Yes</td>
</tr>
<tr>
<td>117 Timber Stringer</td>
<td>3251 FT CS 1</td>
<td>Constructed 5- 4" x 8" treated timber stringers.</td>
<td>Yes, partially</td>
</tr>
<tr>
<td>131 Painted Slab Deck Truss</td>
<td>351 FT CS 2</td>
<td>10/4/04 - All steel corroding & in need of rehab</td>
<td>Yes</td>
</tr>
<tr>
<td>511 Expansion</td>
<td>1 EA CS 1</td>
<td>10/11/05 - Bearings show movement is possible. Significant corrosion is present but bearings appear functional. 8/27/12 - Extensive crack in lower portion of bearing on South bearing on East abutment. 8/28/13 - Changed quantity to</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Bridge Inspection Methods and Results

Bridge 49553 –Morrison County Orthographic Mapping
Bridge Inspection Methods and Results

Bridge 49553 – Morrison County Orthographic Mapping
Bridge Inspection Methods and Results

Arcola Railroad Bridge
- Large Complex Bridge
- Normally inspected using rope access
- National Park Service Permission
- Difficult to access
Bridge Inspection Methods and Results

Arcola Railroad Bridge – Image Detail
Bridge Inspection Methods and Results

Arcola Railroad Bridge – Image Detail
Bridge Inspection Methods and Results

Arcola Railroad Bridge – Image Detail
Bridge Inspection Methods and Results

Arcola Railroad Bridge – Image Detail
Bridge Inspection Methods and Results

Arcola Railroad Bridge
Phase II Study

- Cost comparison with UBIVs, traffic control
- Explore inspection specific technology including the Sensfly eXom
- Compile a best practices document
- Incorporate into an actual inspection
- Use UAS in the planning of an inspection
- Use a secondary display for bridge inspector
- Deck surveys with zoom camera
- Culvert and Box Girder Inspection
- IR Deck Delamination Assessment at Dawn
- Paint Assessment
- Data on how many hours UAS vs. other methods
Phase II Study

Blatnik Bridge Inspection

• Second Largest Bridge in Minnesota
• Crosses Duluth Harbor adjacent to Lake Superior
• Challenging wind and weather
Phase II Study
Phase II Study

Nielsville Bridge 5767
- Infrared Imaging
- Thermal Camera results were similar to high end Flir cameras
- Drone has the ability to map chain drag markings for quantities in CAD
Phase II Study

Nielsville Bridge 5767
Phase II Study

Bridge 5767 3D Point Cloud
Phase II Study

City of St. Paul Culvert 62513
Phase III – Project Goals

- Statewide UAS Inspection Contract – based on the MnDOT Bridge Access Inspection Policy list
- Overall Cost Effectiveness – at a statewide level for both District and local agency bridges
- Inspection Quality and Safety Improvements – close-up, 3D, and thermal imagery
- Identification of Sustainable Future Funding
Phase III – Schedule & Cost

• **Task I** – Finalize Bridge Work Plans/Approvals
 – 9 months beginning **August 2016**

• **Task II** – Field Work and Evaluation
 – 9 months – **April to December 2017**

• **Task III** – Documentation/Final Study Report
 – 6 months – **Ending June 2018**

• **COST** - $100,000
 – Task I - $30,000
 – Task II - $50,000
 – Task III - $20,000
Conclusions

- UAS can be used in the field during bridge inspections safely.
- Image quality allows for the identification of defects.
- Tactile functions cannot be replicated using UAS.
- UASs can be cost effective.
- UASs can provide a very efficient way to collect infrared images.
- Safety risks could be minimized with the use of UASs.
- UASs can be utilized to determine channel conditions.
- UASs can provide important pre-inspection information.
- “Off the shelf” UAS’s have limited inspection capability.
- FAA rules are improving.
Recommendations

- Based on the information presented in this report the following recommendations are made:
- The use of UASs for bridge inspection should be considered when a hands on inspection is not needed.
- Should be considered for routine inspections to improve the quality of the inspection.
- Should also be considered where they can increase safety for inspection personnel and the traveling public.
- A set of best practices and safety guidelines should be prepared.
- Should be considered for interim inspections or to monitor areas of concern.
- Should be considered for emergency inspections.
Other Civil Engineering Uses

- 3D Mapping
- Dam Inspection
- Earthwork Volumes
- Traffic Control Monitoring
- River/Stream Inspections
- RR Track Inspection
- Pavement Inspection
- High Mast Light Inspection
- Utility Inspection
- Construction Site Assessment
Public Response

- Almost 100 news articles and stories
- Overwhelmingly positive
- Safety, reduced closures and cost efficiency valued by public
A special thank you to all the bridge owners who made available their bridges for the inspection phase of the study:

- Joe Triplet, Chisago County
- Mike Sheehan, Olmsted County
- Kaye Bieniek, Olmsted County
- Benjamin Johnson, Olmsted County
- Jeff Busch, Olmsted County
- Kent Haugen, Olmsted County
- Cain Duncan, City of Oronoco
- Steve Backowski, Morrison County
- John Kostreba, Morrison County
- DJ Prom, Morrison County
- Sergio Zoruba, Canadian National Railway
- Peter de Vries, Canadian National Railway
- Albert Hines, Canadian National Railway
- Kevin Rohling, MnDOT District 1
- Brent Christiansen, City of St. Paul
- Rich Sanders, Polk County
Sensefly Albris Demonstration
Jennifer L. Zink, P.E.
Bridge Inspection Engineer
MnDOT Bridge Office
3485 Hadley Avenue North
Oakdale, MN 55128-3307
Phone: 651-366-4573
jennifer.zink@state.mn.us

Barritt Lovelace, P.E.
1599 Selby Avenue, Ste. 206
St. Paul, MN 55104
Phone: 651.646.8502
blovelace@collinsengr.com
www.collinsengr.com

Sarah Sondag, P.E.
Bridge Operations Support Engineer
MnDOT Bridge Office
3485 Hadley Avenue North
Oakdale, MN 55128-3307
Phone: 651-366-4529
sarah.sondag@state.mn.us