Status Update and LTBP Deterioration Modeling Framework

2016 Midwest Bridge Preservation Partnership October 5, 2016 Milwaukee, WI

Robert Zobel, Ph.D., P.E. LTBP Program Coordinator Long-Term Bridge Performance Program Federal Highway Administration

ER-FAIRBANK

HIGHWAY RESEARCH CENTE

Federal Highway Administration

Projects at a Glance

Rutgers

- Data-Driven Modeling
- Bridge Portal
- Field Data Collection
- Legacy Data Mining
- Other Projects Drone

<u>PB</u>

NW – SW visual inspection

<u>Michael Baker</u>

 Gulf Visual inspection, material sampling

-}

PSI

Legacy Data Mining

<u>Pennoni</u>

- WIM
- LTBP Performance Index
- Develop an accelerated testing bridge DB
- Website & Newsletter
- Protocol Publication
- RABIT Acquisition

JRNER–FAIRBANK

Automated Data Collection RABIT[™] Bridge Deck Assessment Tool

• Procurement of four autonomous robotic bridge deck assessment tools inclusive of training to LTBP contractors for the proper deployment of the technology in field data collection activities

HIGHWAY RESEARCH

Long-Term Bridge Performance Program

U.S. Department of Transportation Federal Highway Administration

Program

BP

RABIT™ Bridge Deck Assessment Tool

Status:

- Development of the software is on-going
- User Manual and Training Curriculum in development
- Validation of RABIT #1 scheduled for September October.
- Robotic platform for RABIT #2 arrived

IRNER–FAIRBANK

HIGHWAY RESEARCH CENTER

ong-Term

rogram

Bridge Performance

LTBP Program – Bridge Portal Update

Version 1.1 of the LTBP Bridge Portal is currently in the process of being deployed and will be available through FHWA network (UPACS) very soon.

Version 1.1 currently being deployed Version 2 expected in 2017

U.S. Department of Transportation Federal Highway Administration

<u>Data Management</u>

Refined Data Analysis, Modeling, and Interpretation Framework

Key Underlying Assumptions

- Time is the most significant influence over bridge performance for any set of input and attributes
- The available NBI and NBE data may have errors and variability, but no bias – that is, the mean predictions derived from these data are (on average) representative of the true behavior
 - At this stage this assumption is made for untreated bridge decks, and will need to be revisited for other elements

Framework Characteristics

- Adaptive has the ability to learn and adapt as new data become available (i.e. to modify, replace, or verify the key assumptions above)
- Comprehensive is cast in general terms so as to be applicable to a diverse set of performances
- Efficient makes use of all of the diverse data being collected by the LTBP Program

Two-Pronged Approach

Top Down

Makes use of data available across the entire population of bridges located within clusters

Employs probabilistic and/or deterministic models to generate deterioration curves based on this data

Essentially provides a broad context to compare the bridges subjected to higher resolution data collection

Bottom Up

TURNER-FAIRBANK

Makes use of data available from legacy data collection, visual inspection, NDE, SHM, material sampling, etc.

In some cases, the bottom up data maybe "translated" to the NBI/NBE scale to be located with respect to the top-down model

Through comparison with the top-down models, the level of over- or underperformance of specific bridges can be quantified

Provides a wealth of data and information to develop and validate quantitative explanations as to why certain bridges overor under-perform

Step 1 – Top-down deterioration modeling

Approaches may include:

Deterministic – Heuristic-based models, Wenzel et al. Probabilistic – Markov, Weibull, Hoatian et al., etc.

Deck Performance

U.S. Department of Transportation Federal Highway Administration

PANK

Program

LTBP

ong-Term

Program

NK

Step 2 – Locate the specific bridge within the topdown deterioration predictions

Direct use of NBI and/or NBE

Or use of other data such as NDE "translated" to the NBI/NBE scale

Deck Performance

Program

LTBP

ong-Term

Program

Step 3 – Quantify explanatory variables

Quantify bridge-specific inputs and attributes based on bottom-up data collection efforts

- Environmental Inputs → Freeze-thaw cycles, hot-dry cycles, temperature range, temperature gradients precipitation, etc.
- Live Load → ADTT, available traffic studies, trucking information, WIM, etc.
- Preservation & Maintenance → Number of snow falls greater than 1 in, available records (legacy data collection), common state practices, etc.
- Design, Structural Characteristics → Number of modes below 5 Hz, damping levels, actual distribution factors, global stiffness, design details (legacy data collection)
- Construction Quality → Available records (legacy data collection), variation of cover, variation of concrete modulus, deviations from design/specification, etc.

U.S. Department of Transportation Federal Highway Administration

NK

nputs

Attributes

ng-Term

idge Performance

Step 4 – Closing the loop – Explanation for observed over- or under-performance

Bridge-Specific Inputs and Attributes

- **Environmental Inputs**
- Live Load
- Preservation & Maintenance
- Design, Structural Characteristics
- **Construction Quality**

Quantified level of Over- or Under Performance

Identify correlations between Inputs/ Attributes and Over/ Under-Performance

As more bottom-up data become available...

- Update, refine, validate key assumptions
- Quantify and model the influence of various inputs and attributes
- Ongoing model refinement and validation
- Updating of data collection approaches

U.S. Department of Transportation Federal Highway Administration

Long-Term Bridge Performance Program

Program

LTBP

NK

Outcome – Enhanced Predictive Capabilities

Data Analysis

LTBP Program

LTBP Data-Driven Deterioration Modeling Methodology (D³M²)

A modified top down approach to "learning"

TURNER-FAIRBANK

RESEARCH

HIGHWAY

U.S. Department of Transportation Federal Highway Administration

TBP Program

Traditional Deterioration Learning Approach

Inherently assume that the chosen model specification best describes deterioration. \rightarrow *Problematic*

Only very poor fit would motivate new choice of model

specifications. \rightarrow *Compromised Accuracy*

Only one model specification can be considered every time. \rightarrow

Inability to Incorporate Different Opinions

NK

Federal Highway Administration

ong-Term

rogram

ridge Performance

Federal Highway Administration

Program

LTBP Data-Driven Deterioration Modeling Methodology (D³M²)

Incorporate the "Learning of Model Specification"

- Propose multiple models of different types
- Allow different opinions to be simultaneously considered

TURNER–FAIRBANK

HIGHWAY RESEARCH

Program

LTBP

LTBP Data-Driven Deterioration Modeling Methodology (D³M²)

Assign Weights to Proposed Models

Initial weights are assumed – consider weights as *prior probabilities* of each model being the true model

U.S. Department of Transportation Federal Highway Administration

TURNER-FAIRBANK

HIGHWAY RESEARCH CENTI

LTBP Data-Driven Deterioration Modeling Methodology (D³M²)

The Learning Process

- Learning is in the form of updating weights of each model using data
- Evaluate the probability of observing new/next data set given each candidate model
 - Alternatively, how much each candidate model agrees with data
- Update the weights of the models based on the probabilities
 - Models with greater likelihoods (higher probability of observance) gain more weight
 - -- they agree more closely with the data

Program

LTBP Data-Driven Deterioration Modeling Methodology (D³M²)

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

TURNER-FAIRBANK

HIGHWAY RESEARCH CENTE

LTBP Data-Driven Deterioration Modeling Methodology (D³M²)

VA Pilot Bridge – Haymarket VA

- Constructed in 1979
- Single Index Learning One Data Source Ground Penetrating Radar (GPR) Data on VA Pilot Bridge
 - Three measurements: Sep 2009, Aug 2011 and Oct 2014

TURNER–FAIRBANK

U.S. Department of Transportation Federal Highway Administration

LTBP Program

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Comparison of GPR Assessments

U.S. Department of Transportation

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Federal Highway Administration

Program

LTBP

ong-Term

Program

Bridge Performance

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Modeling

- Accountable variables: *AGE*
- GPR at T_a vs. GPR at T_b

U.S. Department of Transportation Federal Highway Administration

TURNER-FAIRBANK

 T_b

HIGHWAY RESEARCH CENTE

 T_a

LTBP Program

Demonstration of the D³M² Concept Using Data Collected from the **LTBP Program VA Pilot Bridge**

All Greek Letters are Coefficients

TURNER-FAIRBANK

HIGHWAY RESEARCH CENTI

Analvsis ata

Program

ong-Term

Program

Bridge Performance

Demonstration of the D³M² Concept Using Data Collected from the **LTBP Program VA Pilot Bridge**

Assumed Initial Weights

/SiS	Model Type 1: $GPR_{T_b} =$				Model Type 2: $GPR_{T_b} =$					
gram 🛛 Data Analy	$GPR_{T_a} \cdot \exp(\alpha + \beta_T \cdot (T_b - T_a) + \varepsilon)$ $\varepsilon \sim N(0, (T_b - T_a)^2 \cdot \sigma^2)$				$\mu + GPR_{T_a} \cdot \beta_{GPR} \cdot (T_b - T_a) + \delta$ $\delta \sim N(0, (T_b - T_a)^2 \cdot \varphi^2)$					
	$\alpha = -0.30$ $\beta_T = 0.20$ $\sigma^2 = 0.08^2$	$\alpha = -0.30$ $\beta_T = 0.25$ $\sigma^2 = 0.07^2$	$\alpha = -0.35$ $\beta_T = 0.25$ $\sigma^2 = 0.04^2$		$\mu = -10$ $\beta_{GPR} = 0.25$ $\varphi^2 = 5^2$	Yer.	$\mu = -8$ $\beta_{GPR} = 0.50$ $\varphi^2 = 5^2$		$\mu = -8$ $\beta_{GPR} = 0.25$ $\varphi^2 = 6^2$	
3P Pro	20%	20%	20%		10%		15%		15%	
LTI	All Greek Letters are Coefficients									

ong-Term **3ridge Performance** rogram

U.S. Department of Transportation **Federal Highway Administration**

TURNER-FAIRBANK

HIGHWAY RESEARCH CENTE

Demonstration of the D³M² Concept Using Data Collected from the **LTBP Program VA Pilot Bridge**

U.S. Department of Transportation Federal Highway Administration

TURNER–FAIRBANK HIGHWAY RESEARCH CENTER

Analysi Data /

LTBP

Bridge Performance

Program

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Distinct Results

- Confidence ~100%
- Agency might not trust learning results
- Readjust the weights

0%

100%

N

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

0%

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Distinct Results

- Confidence ~100%
- Agency might not trust learning results
- Readjust the weights

TURNER-FAIRBANK

HIGHWAY RESEARCH CENTI

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Learning with 2011 – 2014 data (updating weights)

Program

Federal Highway Administration

R–FAIRBANK

HIGHWAY RESEARCH CENTE

TURNER-FAIRBANK

U.S. Department of Transportation

Federal Highway Administration

HIGHWAY RESEARCH CENTE

Demonstration of the D³M² Concept Using Data Collected from the **LTBP Program VA Pilot Bridge**

Learning is flexible and can be corrected any time

Models can be added or removed any time

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Program

Federal Highway Administration

TURNER-FAIRBANK

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Remove Candidate Models with 0% Weights

Model Type $1: GPR_{T_b} =$

 $GPR_{T_a} \cdot \exp(\alpha + \beta_T \cdot (T_b - T_a) + \varepsilon)$ $\varepsilon \sim N(0, (T_b - T_a)^2 \cdot \sigma^2)$

 $\alpha = -0.30$

 $\sigma^2 = 0.07^2$

100%

 $\beta_T = 0.25$

Data Analysis

ER-FAIRBANK

HIGHWAY RESEARCH CENTER

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Add New Candidate Models → Refined Learning

Program

Federal Highway Administration

TURNER-FAIRBANK

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Add New Candidate Models → Refined Learning

Model Type 1: $GPR_{T_h} =$ Data Analysis $GPR_{T_a} \cdot \exp(\alpha + \beta_T \cdot (T_b - T_a) + \varepsilon)$ $\varepsilon \sim N(0, (T_b - T_a)^2 \cdot \sigma^2)$ $\alpha = -0.31$ $\alpha = -0.30$ $\alpha = -0.30$ $\alpha = -0.31$ Equal $\beta_T = 0.25$ $\beta_T = 0.25$ $\beta_T = 0.26$ $\beta_T = 0.26$ Weights Program $\sigma^2 = 0.07^2$ $\sigma^2 = 0.07^2$ $\sigma^2 = 0.07^2$ $\sigma^2 = 0.07^2$ 25% 25% 25% 25% LTBP

All Greek Letters are Coefficients

TURNER-FAIRBANK

TURNER-FAIRBANK

U.S. Department of Transportation

Federal Highway Administration

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

Learning with 2009 – 2011 data (updating weights)

 $\alpha = -0.30$

 $\beta_T = 0.26$

 $\sigma^2 = 0.07^2$

0.08%

All Greek Letters are Coefficients

Model Type 1: $GPR_{T_b} =$

 $\alpha = -0.30$

 $\beta_T = 0.25$

 $\sigma^2 = 0.07^2$

11.84%

 $GPR_{T_a} \cdot \exp(\alpha + \beta_T \cdot (T_b - T_a) + \varepsilon)$ $\varepsilon \sim N(0, (T_b - T_a)^2 \cdot \sigma^2)$

 $\alpha = -0.31$

 $\beta_T = 0.26$

 $\sigma^2 = 0.07^2$

0.59%

LTBP Program

<u>Dat</u>a Analysi

 $\alpha = -0.31$

 $\beta_T = 0.25$

 $\sigma^2 = 0.07^2$

87.49%

Demonstration of the D³M² Concept Using Data Collected from the **LTBP Program VA Pilot Bridge**

Learning with 2011 - 2014 data (updating weights)

Model Type 1: $GPR_{T_h} =$

$$\begin{aligned} & \text{GPR} \ _{T_a} \cdot \exp(\alpha + \beta_T \cdot (T_b - T_a) + \varepsilon) \\ & \varepsilon \sim N(0, (T_b - T_a)^2 \cdot \sigma^2) \end{aligned}$$

All Greek Letters are Coefficients

TURNER–FAIRBANK HIGHWAY RESEARCH CENTER

> U.S. Department of Transportation Federal Highway Administration

LTBP

ong-Term

Program

Bridge Performance

Demonstration of the D³M² Concept Using Data Collected from the LTBP Program VA Pilot Bridge

- Multi-Index Learning
 - Indices reflect the condition of the same element: *inevitably correlated*
 - Essential for D³M² to simultaneously learn multiple indices
 - E.g. GPR & Half-Cell Potential (HCP)

All Greek Letters are Coefficients

Model Type Example $GPR_{T_b} = GPR_{T_a} \cdot \exp(\alpha + \beta_{GPR} \cdot (T_b - T_a) + \varepsilon)$ $HCP_{T_b} = \omega \cdot \text{HCP}_{T_a} + \beta_{HCP} \cdot (T_b - T_a) + \delta$

The ability to model and forecast individual indices allows us to forecast bridge conditions, and accordingly make optimal repair decisions

U.S. Department of Transportation Federal Highway Administration

ng-Term

ogram

idge Performance

What are the Implications of Proposed Data-**Driven Modeling Approach ?**

Forecasting Ground Penetrating Radar Results (Bridge Decks)

Data Analysis

Ground Penetrating Radar (GPR)

t_o

Representati on Only

Once enough data is collected and model is validated, it can be used for forecasting purposes. This could be done for ALL data collected by LTBP.

Forecast data

U.S. Department of Transportation Federal Highway Administration

LTBP

Where Are We Now?

A Beta Version of Deterioration Modeling Application has been developed for NBI and NDE data and incorporated into the Bridge Portal

Conversations with Pilot States (NY, NJ, etc.) on validating the

Deterioration Modeling Application

<u>We Need Historical Data – Core Elements OK !!</u>

TURNER-FAIRBANK

HIGHWAY RESEARCH

Federal Highway Administration

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Program

LTBP Program

Program

Untreated Decks Treated Decks Concr Concrete Protocols Available Now! Steel Multigirder Prestressed Presu Prestressed Concrete Concrete Bon Concrete Box Multigirder Prestressing Strands **Steel Coatings Prestressing Strands** Bearings Bearings Bearings Bearm **Refocus Field Efforts** ong-Term U.S. Department of Transportation Bridge Performance

Federal Highway Administration

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

> U.S. Department of Transportation Federal Highway Administration

ong-Term

Program

Bridge Performance

LTBP Program

Program

→ Untreate	d Decks		Treated Decks					
	Concrete				Concrete			
Steel Multigirder	Prestressed Concrete Multigirder	Prestressed Concrete Box	Steel Mu	ıltigirder	Prestressed Concrete Multigirder	Prestressed Concrete Box		
Steel Coatings	Prestressing Strands		Steel Coatings		Prestressing Strands			
→ Bearings Joints	Bearings	Joints	Bearings	Joints	Bearings	Joints		
ong-Term ridge Performance	Q U.S. Depar	tment of Transportation						

Federal Highway Administration

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

RNER-FAIRBANK HIGHWAY RESEARCH CENTER **Long-Term Bridge Performance** Program **Status Update** uestions 2016 Midwest Bridge Prese Partnership sert Zobel, Ph.D., P.E. **LTBP Program Coordinator** Long-Term Bridge Performance Program **Federal Highway Administration**

