

Beam End Treatments for Steel Bridges

Bobby Meade Sudhir Palle MWBPP Meeting October 2016

Problems at Beam Ends

Debris build-up

- Attracts/retains moisture
- Leaking joints
 - Deck run-off falls onto beam ends, bearings, etc.
 - Extended time of wetness
 - Exposure to deicing salts
- Results
 - Localized premature coating failures
 - Significant corrosion
 - Loss of section on steel members

Typical Beam End Issues

Typical Beam End Issues

Typical Beam End Issues

Potential Beam End Treatments

Cleaning of affected areas

- Debris removal
- Washing
- Surface preparation and coatings application
 - Rough/pitted steel and high chloride levels
 - Minimizes chances of success with barrier and inhibitive coatings
 - Blast/power tool cleaning and zinc coatings are somewhat effective
 - Expensive
 - Worker safety & environmental issues (lead coatings)
- Other options?

Desirable Characteristics of Beam End Treatments

- Effective beam end treatments
 - A 5-year service life (min.)
 - Applied with minimal surface preparation
 - Tolerant of rough surfaces/residual chlorides
- Application by state forces
 - Limited worker safety & environmental issues
 - No specialized skill requirements (painters)
 - Basic tools

Project Treatment Options

- KTC looked "outside the box" for solutions
 - Super barriers
 - Tapes (4 tested)
 - Adhesive sheets (3 tested)
 - Greases (2 tested)
 - Non traditional liquid-applied coatings (2 tested)

Coatings Field Application

I-64/75 Over US 68 March 2013

Steel Condition

Steel Coating Condition

Grease

Gypsum/Caster Oil

Paint

09 02 2016

Clear Polyester

Sheet

10.09.2015⁰⁹²²⁵³⁰¹⁶

Clear Polyester

Sheet

09 02 2016

Aluminum Foil

Sheet

10.09.2015 13:11 09 02 2016

Aluminum Foil

Sheet

09 02 2016

Polyvinyl Fluoride

Tape

10.09.2015 139 97 2016

Polyurethane 0.09.2015 13:09 02 2016 Sheet Sheet Sheet

Petrolatum/Siliceous

Tape

Petrolatum/Siliceous

Polymer Compound

Tape

09 02 2016 10.09.2015 13:04

Polymer Compound

Tape

09 02 2016

Conclusions

- Effective beam end treatment materials have been identified
- They can be applied with low-tech surface preparation
- They can protect steel in a challenging environment
- The remaining issue will be their durability

Content from Two Research Studies

• KTC-16-03/SPR12-433-1F Thin Film Concrete Coatings

KTC-16-08/SPR14-484-1F
 Chloride Contamination Remediation
 On Steel Bridges

Thank You!

Bobby Meade bobby.meade@uky.edu 502-517-1257